# In 2_Enhanced_Analysis.py """ Enhanced Analysis Page Advanced multi-modal spectroscopy analysis with modern ML architecture """ import streamlit as st import torch import numpy as np import matplotlib.pyplot as plt from pathlib import Path import io from PIL import Image import sys import os sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), "modules")) from modules.transparent_ai import TransparentAIEngine, PredictionExplanation from modules.enhanced_data import ( EnhancedDataManager, ContextualSpectrum, SpectralMetadata, ) from modules.advanced_spectroscopy import MultiModalSpectroscopyEngine from modules.modern_ml_architecture import ( ModernMLPipeline, ) from modules.enhanced_data_pipeline import EnhancedDataPipeline from core_logic import load_model from utils.multifile import parse_spectrum_data from models.registry import choices from config import TARGET_LEN # Removed unused preprocess_spectrum import def init_enhanced_analysis(): """Initialize enhanced analysis session state with new components""" if "data_manager" not in st.session_state: st.session_state.data_manager = EnhancedDataManager() if "spectroscopy_engine" not in st.session_state: st.session_state.spectroscopy_engine = MultiModalSpectroscopyEngine() if "ml_pipeline" not in st.session_state: st.session_state.ml_pipeline = ModernMLPipeline() st.session_state.ml_pipeline.initialize_models() if "data_pipeline" not in st.session_state: st.session_state.data_pipeline = EnhancedDataPipeline() if "transparent_ai" not in st.session_state: st.session_state.transparent_ai = None if "current_model" not in st.session_state: st.session_state.current_model = None if "analysis_results" not in st.session_state: st.session_state.analysis_results = None def load_enhanced_model(model_name: str): """Load model and initialize transparent AI engine""" try: model = load_model(model_name) if model is not None: st.session_state.current_model = model st.session_state.transparent_ai = TransparentAIEngine(model) return True return False except Exception as e: st.error(f"Error loading model: {e}") st.error("Please check the model name and ensure the model file is accessible.") st.error("Detailed traceback has been logged for debugging.") import traceback traceback.print_exc() return False def render_enhanced_file_upload(): """Render enhanced file upload with metadata extraction""" st.subheader("Deeper Analysis on Spectrum with AI Insights") uploaded_file = st.file_uploader( "Upload spectrum file (.txt)", type=["txt"], help="Upload a Raman or FTIR spectrum in text format", ) if uploaded_file is not None: # Parse spectrum data try: content = uploaded_file.read().decode("utf-8") x_data, y_data = parse_spectrum_data(content) # Create enhanced spectrum with metadata metadata = SpectralMetadata( filename=uploaded_file.name, instrument_type="Raman", # Default, could be detected from filename data_quality_score=None, ) spectrum = ContextualSpectrum(x_data, y_data, metadata) # Get data quality assessment data_manager = st.session_state.data_manager quality_score = data_manager.assess_data_quality(y_data) spectrum.metadata.data_quality_score = quality_score # Display quality assessment col1, col2, col3 = st.columns(3) with col1: st.metric("Data Points", len(x_data)) with col2: st.metric("Quality Score", f"{quality_score:.2f}") with col3: quality_color = ( "๐ŸŸข" if quality_score > 0.7 else "๐ŸŸก" if quality_score > 0.4 else "๐Ÿ”ด" ) st.metric("Quality", f"{quality_color}") # Get preprocessing recommendations recommendations = data_manager.get_preprocessing_recommendations(spectrum) st.subheader("Intelligent Preprocessing Recommendations") rec_col1, rec_col2 = st.columns(2) with rec_col1: st.write("**Recommended settings:**") for param, value in recommendations.items(): st.write(f"โ€ข {param}: {value}") with rec_col2: st.write("**Manual override:**") do_baseline = st.checkbox( "Baseline correction", value=recommendations.get("do_baseline", True), ) do_smooth = st.checkbox( "Smoothing", value=recommendations.get("do_smooth", True) ) do_normalize = st.checkbox( "Normalization", value=recommendations.get("do_normalize", True) ) # Apply preprocessing with tracking preprocessing_params = { "do_baseline": do_baseline, "do_smooth": do_smooth, "do_normalize": do_normalize, "target_len": TARGET_LEN, } if st.button("Process and Analyze"): with st.spinner("Processing spectrum with provenance tracking..."): # Apply preprocessing with full tracking processed_spectrum = data_manager.preprocess_with_tracking( spectrum, **preprocessing_params ) # Store processed spectrum st.session_state.processed_spectrum = processed_spectrum st.success("Spectrum processed with full provenance tracking!") # Display provenance information st.subheader("Processing Provenance") for record in processed_spectrum.provenance: with st.expander(f"Operation: {record.operation}"): st.write(f"**Timestamp:** {record.timestamp}") st.write(f"**Parameters:** {record.parameters}") st.write(f"**Input hash:** {record.input_hash}") st.write(f"**Output hash:** {record.output_hash}") except Exception as e: st.error(f"Error processing file: {e}") def render_transparent_analysis(): """Render transparent AI analysis with explanations""" if "processed_spectrum" not in st.session_state: st.info("Please upload and process a spectrum first.") return st.header("๐Ÿง  Transparent AI Analysis") # Model selection model_names = choices() selected_model = st.selectbox("Select AI model:", model_names) if st.session_state.current_model is None or st.button("Load Model"): with st.spinner(f"Loading {selected_model} model..."): if load_enhanced_model(selected_model): st.success(f"Model {selected_model} loaded successfully!") else: st.error("Failed to load model") return if st.session_state.transparent_ai is not None: spectrum = st.session_state.processed_spectrum if st.button("Run Transparent Analysis"): with st.spinner("Running comprehensive analysis..."): # Prepare input tensor y_processed = spectrum.y_data x_input = torch.tensor(y_processed, dtype=torch.float32).unsqueeze(0) # Get transparent explanation explanation = st.session_state.transparent_ai.predict_with_explanation( x_input, wavenumbers=spectrum.x_data ) # Generate hypotheses hypotheses = st.session_state.transparent_ai.generate_hypotheses( explanation ) # Store results st.session_state.analysis_results = { "explanation": explanation, "hypotheses": hypotheses, } # Display results render_analysis_results(explanation, hypotheses) def render_analysis_results(explanation: PredictionExplanation, hypotheses: list): """Render comprehensive analysis results""" st.subheader("๐ŸŽฏ Prediction Results") # Main prediction class_names = ["Stable", "Weathered"] predicted_class = class_names[explanation.prediction] col1, col2, col3 = st.columns(3) with col1: st.metric("Prediction", predicted_class) with col2: st.metric("Confidence", f"{explanation.confidence:.3f}") with col3: confidence_emoji = ( "๐ŸŸข" if explanation.confidence_level == "HIGH" else "๐ŸŸก" if explanation.confidence_level == "MEDIUM" else "๐Ÿ”ด" ) st.metric("Level", f"{confidence_emoji} {explanation.confidence_level}") # Probability distribution st.subheader("๐Ÿ“Š Probability Distribution") prob_data = {"Class": class_names, "Probability": explanation.probabilities} fig, ax = plt.subplots(figsize=(8, 5)) bars = ax.bar(prob_data["Class"], prob_data["Probability"]) ax.set_ylabel("Probability") ax.set_title("Class Probabilities") ax.set_ylim(0, 1) # Color bars based on prediction for i, bar in enumerate(bars): if i == explanation.prediction: bar.set_color("steelblue") else: bar.set_color("lightgray") st.pyplot(fig) # Reasoning chain st.subheader("๐Ÿ” AI Reasoning Chain") for i, reasoning in enumerate(explanation.reasoning_chain): st.write(f"{i+1}. {reasoning}") # Feature importance if explanation.feature_importance: st.subheader("๐ŸŽฏ Feature Importance Analysis") # Create feature importance plot features = list(explanation.feature_importance.keys()) importances = list(explanation.feature_importance.values()) fig, ax = plt.subplots(figsize=(10, 6)) bars = ax.barh(features, importances) ax.set_xlabel("Importance Score") ax.set_title("Spectral Region Importance") # Color bars based on importance for bar, importance in zip(bars, importances): if abs(importance) > 0.5: bar.set_color("red") elif abs(importance) > 0.3: bar.set_color("orange") else: bar.set_color("lightblue") plt.tight_layout() st.pyplot(fig) # Uncertainty analysis st.subheader("๐Ÿค” Uncertainty Analysis") for source in explanation.uncertainty_sources: st.write(f"โ€ข {source}") # Confidence intervals if explanation.confidence_intervals: st.subheader("๐Ÿ“ˆ Confidence Intervals") for class_name, (lower, upper) in explanation.confidence_intervals.items(): st.write(f"**{class_name}:** [{lower:.3f}, {upper:.3f}]") # AI-generated hypotheses if hypotheses: st.subheader("๐Ÿงช AI-Generated Scientific Hypotheses") for i, hypothesis in enumerate(hypotheses): with st.expander(f"Hypothesis {i+1}: {hypothesis.statement}"): st.write(f"**Confidence:** {hypothesis.confidence:.3f}") st.write("**Supporting Evidence:**") for evidence in hypothesis.supporting_evidence: st.write(f"โ€ข {evidence}") st.write("**Testable Predictions:**") for prediction in hypothesis.testable_predictions: st.write(f"โ€ข {prediction}") st.write("**Suggested Experiments:**") for experiment in hypothesis.suggested_experiments: st.write(f"โ€ข {experiment}") def render_data_provenance(): """Render data provenance and quality information""" if "processed_spectrum" not in st.session_state: st.info("No processed spectrum available.") return st.header("๐Ÿ“‹ Data Provenance & Quality") spectrum = st.session_state.processed_spectrum # Metadata display st.subheader("๐Ÿ“„ Spectrum Metadata") metadata = spectrum.metadata col1, col2 = st.columns(2) with col1: st.write(f"**Filename:** {metadata.filename}") st.write(f"**Instrument:** {metadata.instrument_type}") st.write(f"**Quality Score:** {metadata.data_quality_score:.3f}") with col2: if metadata.laser_wavelength: st.write(f"**Laser Wavelength:** {metadata.laser_wavelength} nm") if metadata.acquisition_date: st.write(f"**Acquisition Date:** {metadata.acquisition_date}") st.write(f"**Data Hash:** {spectrum.data_hash}") # Provenance timeline st.subheader("๐Ÿ•’ Processing Timeline") if spectrum.provenance: for i, record in enumerate(spectrum.provenance): with st.expander( f"Step {i+1}: {record.operation} ({record.timestamp[:19]})" ): st.write(f"**Operation:** {record.operation}") st.write(f"**Operator:** {record.operator}") st.write(f"**Parameters:**") for param, value in record.parameters.items(): st.write(f" - {param}: {value}") st.write(f"**Input Hash:** {record.input_hash}") st.write(f"**Output Hash:** {record.output_hash}") else: st.info("No processing operations recorded yet.") # Quality assessment details st.subheader("๐Ÿ” Quality Assessment Details") if hasattr(spectrum, "quality_metrics"): metrics = spectrum.quality_metrics for metric, value in metrics.items(): st.write(f"**{metric}:** {value}") else: st.info("Run quality assessment to see detailed metrics.") def main(): """Main enhanced analysis interface""" st.set_page_config( page_title="ML Polymer Enhanced Analysis", page_icon="๐Ÿ”ฌ", layout="wide" ) st.title("Enhanced Spectrum Analysis") st.markdown("**Transparent AI with Explainability and Hypothesis Generation**") # Initialize session init_enhanced_analysis() # Sidebar navigation st.sidebar.title("๐Ÿงช Analysis Tools") analysis_mode = st.sidebar.selectbox( "Select analysis mode:", [ "Spectrum Upload & Processing", "Transparent AI Analysis", "Data Provenance & Quality", ], ) # Render selected mode if analysis_mode == "Spectrum Upload & Processing": render_enhanced_file_upload() elif analysis_mode == "Transparent AI Analysis": render_transparent_analysis() elif analysis_mode == "Data Provenance & Quality": render_data_provenance() # Additional information st.sidebar.markdown("---") st.sidebar.markdown("**Enhanced Features:**") st.sidebar.markdown("โ€ข Complete provenance tracking") st.sidebar.markdown("โ€ข Intelligent preprocessing") st.sidebar.markdown("โ€ข Uncertainty quantification") st.sidebar.markdown("โ€ข AI hypothesis generation") st.sidebar.markdown("โ€ข Explainable predictions") # Display current analysis status if st.session_state.analysis_results: st.sidebar.success("โœ… Analysis completed") elif "processed_spectrum" in st.session_state: st.sidebar.info("๐Ÿ“Š Spectrum processed") else: st.sidebar.info("๐Ÿ“ Ready for upload") if __name__ == "__main__": main()