Spaces:
Running
Running
devjas1
commited on
Commit
·
d6ff372
1
Parent(s):
fe030dd
(FEAT)[Add Training Types Module]: Introduce core data structures and types for training system, including TrainingConfig and TrainingProgress classes, along with cross-validation strategies and data augmentation functionality.
Browse files- utils/training_types.py +128 -0
utils/training_types.py
CHANGED
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Defines core data structures and types for the training system.
|
3 |
+
|
4 |
+
This module centralizes data classes like TrainingConfig and helper
|
5 |
+
functions to avoid circular dependencies between the TrainingManager
|
6 |
+
and TrainingEngine.
|
7 |
+
"""
|
8 |
+
|
9 |
+
from dataclasses import dataclass, asdict, field
|
10 |
+
from enum import Enum
|
11 |
+
from typing import List, Optional, Dict, Any, Tuple
|
12 |
+
from datetime import datetime
|
13 |
+
import numpy as np
|
14 |
+
|
15 |
+
from sklearn.model_selection import StratifiedKFold, KFold, TimeSeriesSplit
|
16 |
+
|
17 |
+
|
18 |
+
class TrainingStatus(Enum):
|
19 |
+
"""Training job status enumeration"""
|
20 |
+
|
21 |
+
PENDING = "pending"
|
22 |
+
RUNNING = "running"
|
23 |
+
COMPLETED = "completed"
|
24 |
+
FAILED = "failed"
|
25 |
+
CANCELLED = "cancelled"
|
26 |
+
|
27 |
+
|
28 |
+
class CVStrategy(Enum):
|
29 |
+
"""Cross-validation strategy enumeration"""
|
30 |
+
|
31 |
+
STRATIFIED_KFOLD = "stratified_kfold"
|
32 |
+
KFOLD = "kfold"
|
33 |
+
TIME_SERIES_SPLIT = "time_series_split"
|
34 |
+
|
35 |
+
|
36 |
+
@dataclass
|
37 |
+
class TrainingConfig:
|
38 |
+
"""Training configuration parameters"""
|
39 |
+
|
40 |
+
model_name: str
|
41 |
+
dataset_path: str
|
42 |
+
target_len: int = 500
|
43 |
+
batch_size: int = 16
|
44 |
+
epochs: int = 10
|
45 |
+
learning_rate: float = 1e-3
|
46 |
+
num_folds: int = 10
|
47 |
+
baseline_correction: bool = True
|
48 |
+
smoothing: bool = True
|
49 |
+
normalization: bool = True
|
50 |
+
modality: str = "raman"
|
51 |
+
device: str = "auto" # auto, cpu, cuda
|
52 |
+
cv_strategy: str = "stratified_kfold" # New field for CV strategy
|
53 |
+
spectral_weight: float = 0.1 # Weight for spectroscopy-specific metrics
|
54 |
+
enable_augmentation: bool = False # Enable data augmentation
|
55 |
+
noise_level: float = 0.01 # Noise level for augmentation
|
56 |
+
|
57 |
+
def to_dict(self) -> Dict[str, Any]:
|
58 |
+
"""Convert to dictionary for serialization"""
|
59 |
+
return asdict(self)
|
60 |
+
|
61 |
+
|
62 |
+
@dataclass
|
63 |
+
class TrainingProgress:
|
64 |
+
"""Training progress tracking with enhanced metrics"""
|
65 |
+
|
66 |
+
current_fold: int = 0
|
67 |
+
total_folds: int = 10
|
68 |
+
current_epoch: int = 0
|
69 |
+
total_epochs: int = 10
|
70 |
+
current_loss: float = 0.0
|
71 |
+
current_accuracy: float = 0.0
|
72 |
+
fold_accuracies: List[float] = field(default_factory=list)
|
73 |
+
confusion_matrices: List[List[List[int]]] = field(default_factory=list)
|
74 |
+
spectroscopy_metrics: List[Dict[str, float]] = field(default_factory=list)
|
75 |
+
start_time: Optional[datetime] = None
|
76 |
+
end_time: Optional[datetime] = None
|
77 |
+
|
78 |
+
|
79 |
+
def get_cv_splitter(strategy: str, n_splits: int = 10, random_state: int = 42):
|
80 |
+
"""Get cross-validation splitter based on strategy"""
|
81 |
+
if strategy == "stratified_kfold":
|
82 |
+
return StratifiedKFold(
|
83 |
+
n_splits=n_splits, shuffle=True, random_state=random_state
|
84 |
+
)
|
85 |
+
elif strategy == "kfold":
|
86 |
+
return KFold(n_splits=n_splits, shuffle=True, random_state=random_state)
|
87 |
+
elif strategy == "time_series_split":
|
88 |
+
return TimeSeriesSplit(n_splits=n_splits)
|
89 |
+
else:
|
90 |
+
# Default to stratified k-fold
|
91 |
+
return StratifiedKFold(
|
92 |
+
n_splits=n_splits, shuffle=True, random_state=random_state
|
93 |
+
)
|
94 |
+
|
95 |
+
|
96 |
+
def augment_spectral_data(
|
97 |
+
X: np.ndarray,
|
98 |
+
y: np.ndarray,
|
99 |
+
noise_level: float = 0.01,
|
100 |
+
augmentation_factor: int = 2,
|
101 |
+
) -> Tuple[np.ndarray, np.ndarray]:
|
102 |
+
"""Augment spectral data with realistic noise and variations"""
|
103 |
+
if augmentation_factor <= 1:
|
104 |
+
return X, y
|
105 |
+
|
106 |
+
augmented_X = [X]
|
107 |
+
augmented_y = [y]
|
108 |
+
|
109 |
+
for i in range(augmentation_factor - 1):
|
110 |
+
# Add Gaussian noise
|
111 |
+
noise = np.random.normal(0, noise_level, X.shape)
|
112 |
+
X_noisy = X + noise
|
113 |
+
|
114 |
+
# Add baseline drift (common in spectroscopy)
|
115 |
+
baseline_drift = np.random.normal(0, noise_level * 0.5, (X.shape[0], 1))
|
116 |
+
X_drift = X_noisy + baseline_drift
|
117 |
+
|
118 |
+
# Add intensity scaling variation
|
119 |
+
intensity_scale = np.random.normal(1.0, 0.05, (X.shape[0], 1))
|
120 |
+
X_scaled = X_drift * intensity_scale
|
121 |
+
|
122 |
+
# Ensure no negative values
|
123 |
+
X_scaled = np.maximum(X_scaled, 0)
|
124 |
+
|
125 |
+
augmented_X.append(X_scaled)
|
126 |
+
augmented_y.append(y)
|
127 |
+
|
128 |
+
return np.vstack(augmented_X), np.hstack(augmented_y)
|