devjas1 commited on
Commit
d3a39d7
·
1 Parent(s): bf55f07

(DOCS): refresh README to reflect mentor guidance and new project vision

Browse files

- Added explicit citation for Figure2CNN baseline (Neo et al., 2023)
- Clarified that project goal is to evaluate multiple CNN architectures, not just a single baseline
- Updated objectives to highlight broader multi-modal roadmap (Raman baseline, Image expansion, FTIR deferred but modular)
- Revised Model Architectures section with clear attribution and forward-looking entries
- Improved Current Status table to show Raman validated, Image planned, and FTIR reactivation
- Strengthened strategic expansion objectives for dashboard integration, model registry, and reproducibility

Files changed (1) hide show
  1. README.md +16 -22
README.md CHANGED
@@ -1,19 +1,25 @@
1
 
2
  # 🔬 AI-Driven Polymer Aging Prediction and Classification System
3
 
4
- [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
5
 
6
- A research project developed as part of AIRE 2025. This system applies deep learning to Raman spectral data to classify polymer aging a critical proxy for recyclability — using a fully reproducible and modular ML pipeline.
7
 
8
  ---
9
 
10
  ## 🎯 Project Objective
11
 
12
  - Build a validated machine learning system for classifying polymer spectra (predict degradation levels as a proxy for recyclability)
13
- - Compare literature-based and modern CNN architectures (Figure2CNN vs. ResNet1D) on Raman spectral data
14
  - Ensure scientific reproducibility through structured diaignostics and artifact control
15
  - Support sustainability and circular materials research through spectrum-based classification.
16
 
 
 
 
 
 
 
17
  ---
18
 
19
  ## 🧠 Model Architectures
@@ -22,8 +28,9 @@ A research project developed as part of AIRE 2025. This system applies deep lear
22
  |------|-------------|
23
  | `Figure2CNN` | Baseline model from literature |
24
  | `ResNet1D` | Deeper candidate model with skip connections |
 
25
 
26
- > Both models support flexible input lengths; Figure2CNN relies on reshape logic, while ResNet1D uses native global pooling.
27
 
28
  ---
29
 
@@ -39,8 +46,7 @@ ml-polymer-recycling/
39
  └── environment.yml # (local) Conda execution environment
40
  ```
41
 
42
- <img width="1773" height="848" alt="ml-polymer-gitdiagram-0" src="https://github.com/user-attachments/assets/bb5d93dc-7ab9-4259-8513-fb680ae59d64" />
43
-
44
 
45
  ---
46
 
@@ -49,17 +55,8 @@ ml-polymer-recycling/
49
  | Track | Status | Test Accuracy |
50
  |-----------|----------------------|----------------|
51
  | **Raman** | ✅ Active & validated | **87.81% ± 7.59%** |
52
- | **FTIR** | ⏸️ Deferred (modeling only) | N/A |
53
-
54
- **Note:** FTIR preprocessing scripts are preserved but inactive. Modeling work is deferred until a suitable architecture is identified.
55
-
56
- **Artifacts:**
57
-
58
- - `outputs/figure2_model.pth`
59
- - `outputs/resnet_model.pth`
60
- - `outputs/logs/raman_{model}_diagnostics.json`
61
-
62
- ---
63
 
64
  ## 🔬 Key Features
65
 
@@ -76,7 +73,6 @@ ml-polymer-recycling/
76
  **Environments:**
77
 
78
  ```bash
79
-
80
  # Local
81
  git checkout main
82
  conda env create -f environment.yml
@@ -93,14 +89,12 @@ conda activate polymer_env
93
  ### Training (10-Fold CV)
94
 
95
  ```bash
96
-
97
  python scripts/train_model.py --model resnet --target-len 4000 --baseline --smooth --normalize
98
  ```
99
 
100
  ### Inference (Raman)
101
 
102
  ```bash
103
-
104
  python scripts/run_inference.py --target-len 4000
105
  --input datasets/rdwp/sample123.txt --model outputs/resnet_model.pth
106
  --output outputs/inference/prediction.txt
@@ -163,9 +157,9 @@ These files are intentionally excluded from version control via `.gitignore`
163
 
164
  ---
165
 
166
- ## 🎯 Strategic Expansion Objectives
167
 
168
- > Following Dr. Kuppannagari’s updated guidance, the project scope now extends beyond the Raman-only validated baseline. The roadmap defines three major expansion paths designed to broaden the system’s capabilities and impact:
169
 
170
  1. **Model Expansion: Multi-Model Dashboard**
171
 
 
1
 
2
  # 🔬 AI-Driven Polymer Aging Prediction and Classification System
3
 
4
+ A research project developed as part of AIRE 2025. This system applies deep learning to spectral data to classify polymer aging a critical proxy for recyclability using a fully reproducible and modular ML pipeline.
5
 
6
+ The broader research vision is a multi-modal evaluation platform, benchmarking not only Raman spectra but also image-based models and FTIR spectral data, ensuring reproducibility, extensibility, and scientific rigor.
7
 
8
  ---
9
 
10
  ## 🎯 Project Objective
11
 
12
  - Build a validated machine learning system for classifying polymer spectra (predict degradation levels as a proxy for recyclability)
13
+ - Evaluate and compare multiple CNN architectures, beginning with Figure2CNN and ResNet variants, and expand to additional trained models.
14
  - Ensure scientific reproducibility through structured diaignostics and artifact control
15
  - Support sustainability and circular materials research through spectrum-based classification.
16
 
17
+ **Reference (for Figure2CNN baseline):**
18
+
19
+ > Neo, E.R.K., Low, J.S.C., Goodship, V., Debattista, K. (2023).
20
+ > Deep learning for chemometric analysis of plastic spectral data from infrared and Raman databases.
21
+ > Resources, Conservation & Recycling, 188, 106718.
22
+ > https://doi.org/10.1016/j.resconrec.2022.106718
23
  ---
24
 
25
  ## 🧠 Model Architectures
 
28
  |------|-------------|
29
  | `Figure2CNN` | Baseline model from literature |
30
  | `ResNet1D` | Deeper candidate model with skip connections |
31
+ | `ResNet18Vision` | Image-focused CNN architecture, retrained on polymer dataset (roadmap) |
32
 
33
+ Future expansions will add additional trained CNNs, supporting direct benchmarking and comparative reporting.
34
 
35
  ---
36
 
 
46
  └── environment.yml # (local) Conda execution environment
47
  ```
48
 
49
+ ![ml-polymer-gitdiagram-0](https://github.com/user-attachments/assets/bb5d93dc-7ab9-4259-8513-fb680ae59d64)
 
50
 
51
  ---
52
 
 
55
  | Track | Status | Test Accuracy |
56
  |-----------|----------------------|----------------|
57
  | **Raman** | ✅ Active & validated | **87.81% ± 7.59%** |
58
+ | **Image** | 🚧 Planned Expansion | N/A |
59
+ | **FTIR** | ⏸️ Deferred/Modularized | N/A |
 
 
 
 
 
 
 
 
 
60
 
61
  ## 🔬 Key Features
62
 
 
73
  **Environments:**
74
 
75
  ```bash
 
76
  # Local
77
  git checkout main
78
  conda env create -f environment.yml
 
89
  ### Training (10-Fold CV)
90
 
91
  ```bash
 
92
  python scripts/train_model.py --model resnet --target-len 4000 --baseline --smooth --normalize
93
  ```
94
 
95
  ### Inference (Raman)
96
 
97
  ```bash
 
98
  python scripts/run_inference.py --target-len 4000
99
  --input datasets/rdwp/sample123.txt --model outputs/resnet_model.pth
100
  --output outputs/inference/prediction.txt
 
157
 
158
  ---
159
 
160
+ ## 🎯 Strategic Expansion Objectives (Roadmap)
161
 
162
+ > The roadmap defines three major expansion paths designed to broaden the system’s capabilities and impact:
163
 
164
  1. **Model Expansion: Multi-Model Dashboard**
165