Spaces:
Running
Running
devjas1
commited on
Commit
·
9a4db95
1
Parent(s):
6927358
(UI): refine expander styling + confidence display
Browse files- Enhance and streamline UI/UX for visual clarity
- Reorganized page sections
- Custom CSS styling
app.py
CHANGED
@@ -40,15 +40,128 @@ st.set_page_config(
|
|
40 |
initial_sidebar_state="expanded"
|
41 |
)
|
42 |
|
43 |
-
# Stabilize tab panel height on HF Spaces to prevent visible column jitter.
|
44 |
-
# This sets a minimum height for the content area under the tab headers.
|
45 |
st.markdown("""
|
46 |
<style>
|
47 |
-
/*
|
48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
</style>
|
50 |
""", unsafe_allow_html=True)
|
51 |
|
|
|
52 |
# Constants
|
53 |
TARGET_LEN = 500
|
54 |
SAMPLE_DATA_DIR = Path("sample_data")
|
@@ -63,7 +176,7 @@ MODEL_CONFIG = {
|
|
63 |
"Figure2CNN (Baseline)": {
|
64 |
"class": Figure2CNN,
|
65 |
"path": f"{MODEL_WEIGHTS_DIR}/figure2_model.pth",
|
66 |
-
"emoji": "
|
67 |
"description": "Baseline CNN with standard filters",
|
68 |
"accuracy": "94.80%",
|
69 |
"f1": "94.30%"
|
@@ -71,7 +184,7 @@ MODEL_CONFIG = {
|
|
71 |
"ResNet1D (Advanced)": {
|
72 |
"class": ResNet1D,
|
73 |
"path": f"{MODEL_WEIGHTS_DIR}/resnet_model.pth",
|
74 |
-
"emoji": "
|
75 |
"description": "Residual CNN with deeper feature learning",
|
76 |
"accuracy": "96.20%",
|
77 |
"f1": "95.90%"
|
@@ -84,6 +197,7 @@ LABEL_MAP = {0: "Stable (Unweathered)", 1: "Weathered (Degraded)"}
|
|
84 |
|
85 |
# === UTILITY FUNCTIONS ===
|
86 |
def init_session_state():
|
|
|
87 |
defaults = {
|
88 |
"status_message": "Ready to analyze polymer spectra 🔬",
|
89 |
"status_type": "info",
|
@@ -256,11 +370,74 @@ def create_spectrum_plot(x_raw, y_raw, x_resampled, y_resampled):
|
|
256 |
plt.close(fig) # Prevent memory leaks
|
257 |
|
258 |
return Image.open(buf)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
259 |
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
264 |
|
265 |
|
266 |
def get_confidence_description(logit_margin):
|
@@ -331,7 +508,7 @@ def reset_results(reason: str = ""):
|
|
331 |
st.session_state["status_type"] = "info"
|
332 |
|
333 |
def reset_ephemeral_state():
|
334 |
-
|
335 |
for k in list(st.session_state.keys()):
|
336 |
if k not in KEEP_KEYS:
|
337 |
st.session_state.pop(k, None)
|
@@ -356,99 +533,57 @@ def reset_ephemeral_state():
|
|
356 |
|
357 |
st.rerun()
|
358 |
|
359 |
-
def plot_confidence_bar(probabilities: list[float], class_labels: list[str]) -> None:
|
360 |
-
"""Renders a horizontal bar chart of prediction confidences per class."""
|
361 |
-
fig, ax = plt.subplots(figsize=(4, 1.5))
|
362 |
-
bars = ax.barh(class_labels, probabilities, color=[
|
363 |
-
"green" if i == np.argmax(probabilities) else "gray"
|
364 |
-
for i in range(len(probabilities))
|
365 |
-
])
|
366 |
-
ax.set_xlabel("Confidence")
|
367 |
-
ax.set_title("Prediction Confidence")
|
368 |
-
ax.xaxis.set_ticks([0, 0.5, 1.0])
|
369 |
-
ax.set_xlim(0, 1.0)
|
370 |
-
for i, (label, prob) in enumerate(zip(class_labels, probabilities)):
|
371 |
-
ax.text(prob + 0.01, i, f"{prob*100:.1f}%", va='center', fontsize=8)
|
372 |
-
|
373 |
-
st.pyplot(fig)
|
374 |
-
|
375 |
-
|
376 |
# Main app
|
377 |
def main():
|
378 |
init_session_state()
|
379 |
-
# Header
|
380 |
-
st.title("🔬 AI-Driven Polymer Classification")
|
381 |
-
st.markdown(
|
382 |
-
"**Predict polymer degradation states using Raman spectroscopy and deep learning**")
|
383 |
-
st.info(
|
384 |
-
"**Prototype Notice:** v0.1 Raman-only. "
|
385 |
-
"Multi-model CNN evaluation in progress. "
|
386 |
-
"FTIR support planned.",
|
387 |
-
icon="⚡"
|
388 |
-
)
|
389 |
|
390 |
# Sidebar
|
391 |
with st.sidebar:
|
392 |
-
|
393 |
-
st.
|
394 |
-
|
395 |
-
|
396 |
-
|
397 |
-
|
398 |
-
🧠 **Models**: CNN architectures for binary classification
|
399 |
-
💾 **Current**: Figure2CNN (baseline)
|
400 |
-
📈 **Next**: More trained CNNs in evaluation pipeline
|
401 |
-
|
402 |
-
---
|
403 |
|
404 |
-
|
405 |
-
|
406 |
-
Dr. Metin Karailyan (Mentor)
|
407 |
-
👨💻 Jaser Hasan (Author)
|
408 |
|
409 |
-
|
|
|
|
|
|
|
410 |
|
411 |
-
|
412 |
-
|
413 |
-
|
|
|
414 |
|
415 |
-
|
416 |
|
417 |
-
|
418 |
-
|
419 |
-
|
420 |
-
|
421 |
-
> _Resources, Conservation & Recycling_, **188**, 106718.
|
422 |
|
423 |
-
|
424 |
-
""")
|
425 |
|
426 |
-
|
|
|
|
|
427 |
|
428 |
-
|
429 |
-
st.subheader("🧠 Model Selection")
|
430 |
-
model_labels = [
|
431 |
-
f"{MODEL_CONFIG[name]['emoji']} {name}" for name in MODEL_CONFIG.keys()]
|
432 |
-
selected_label = st.selectbox("Choose AI model:", model_labels,
|
433 |
-
key="model_select", on_change=on_model_change)
|
434 |
-
model_choice = selected_label.split(" ", 1)[1]
|
435 |
|
436 |
-
|
437 |
-
|
438 |
-
|
439 |
-
|
440 |
-
|
441 |
-
*{config['description']}*
|
442 |
-
|
443 |
-
- **Accuracy**: `{config['accuracy']}`
|
444 |
-
- **F1 Score**: `{config['f1']}`
|
445 |
-
""")
|
446 |
|
447 |
# Main content area
|
448 |
-
col1, col2 = st.columns([1, 1.
|
449 |
|
450 |
with col1:
|
451 |
-
st.
|
452 |
|
453 |
mode = st.radio(
|
454 |
"Input mode",
|
@@ -484,7 +619,7 @@ def main():
|
|
484 |
st.session_state["status_type"] = "success"
|
485 |
|
486 |
if up:
|
487 |
-
st.
|
488 |
|
489 |
# ---- Sample tab ----
|
490 |
else:
|
@@ -499,12 +634,12 @@ def main():
|
|
499 |
on_change=on_sample_change, # <-- critical
|
500 |
)
|
501 |
if sel != "-- Select Sample --":
|
502 |
-
st.
|
503 |
else:
|
504 |
st.info("No sample data available")
|
505 |
|
506 |
# ---- Status box ----
|
507 |
-
st.
|
508 |
msg = st.session_state.get("status_message", "Ready")
|
509 |
typ = st.session_state.get("status_type", "info")
|
510 |
if typ == "success":
|
@@ -553,11 +688,8 @@ def main():
|
|
553 |
r1, r2 = resample_spectrum(x_raw, y_raw, TARGET_LEN)
|
554 |
|
555 |
def _is_strictly_increasing(a):
|
556 |
-
|
557 |
-
|
558 |
-
return a.ndim == 1 and a.size >= 2 and np.all(np.diff(a) > 0)
|
559 |
-
except Exception:
|
560 |
-
return False
|
561 |
|
562 |
if _is_strictly_increasing(r1) and not _is_strictly_increasing(r2):
|
563 |
x_resampled, y_resampled = np.asarray(r1), np.asarray(r2)
|
@@ -592,7 +724,7 @@ def main():
|
|
592 |
# Results column
|
593 |
with col2:
|
594 |
if st.session_state.get("inference_run_once", False):
|
595 |
-
st.
|
596 |
|
597 |
# Get data from session state
|
598 |
x_raw = st.session_state.get('x_raw')
|
@@ -650,127 +782,98 @@ def main():
|
|
650 |
predicted_class = LABEL_MAP.get(
|
651 |
int(prediction), f"Class {int(prediction)}")
|
652 |
|
653 |
-
#
|
654 |
logit_margin = abs(
|
655 |
logits_list[0] - logits_list[1]) if len(logits_list) >= 2 else 0
|
656 |
confidence_desc, confidence_emoji = get_confidence_description(
|
657 |
logit_margin)
|
658 |
|
659 |
-
# Display results
|
660 |
-
st.markdown("### 🎯 Prediction Results")
|
661 |
-
|
662 |
-
# Main prediction
|
663 |
-
st.markdown(f"""
|
664 |
-
**🔬 Sample**: `{filename}`
|
665 |
-
**🧠 Model**: `{model_choice}`
|
666 |
-
**⏱️ Processing Time**: `{inference_time:.2f}s`
|
667 |
-
""")
|
668 |
-
|
669 |
-
# Prediction box
|
670 |
-
if predicted_class == "Stable (Unweathered)":
|
671 |
-
st.success(f"🟢 **Prediction**: {predicted_class}")
|
672 |
-
else:
|
673 |
-
st.warning(f"🟡 **Prediction**: {predicted_class}")
|
674 |
-
|
675 |
-
# Confidence
|
676 |
-
st.markdown(
|
677 |
-
f"**{confidence_emoji} Confidence**: {confidence_desc} (margin: {logit_margin:.1f})")
|
678 |
-
|
679 |
-
# Ground truth comparison
|
680 |
-
if true_label_idx is not None:
|
681 |
-
if predicted_class == true_label_str:
|
682 |
-
st.success(
|
683 |
-
f"✅ **Ground Truth**: {true_label_str} - **Correct!**")
|
684 |
-
else:
|
685 |
-
st.error(
|
686 |
-
f"❌ **Ground Truth**: {true_label_str} - **Incorrect**")
|
687 |
-
else:
|
688 |
-
st.info(
|
689 |
-
"ℹ️ **Ground Truth**: Unknown (filename doesn't follow naming convention)")
|
690 |
-
|
691 |
-
# ===display confidence results===
|
692 |
-
class_labels = ["Stable", "Weathered"]
|
693 |
-
st.markdown("#### 🔬 Confidence Overview")
|
694 |
-
def render_confidence_bar(prob, length=20):
|
695 |
-
filled = int(prob + length)
|
696 |
-
return "█" * filled + "░" * (length - filled)
|
697 |
-
|
698 |
-
for i, label in enumerate(class_labels):
|
699 |
-
st.write(f"**{label}**: {render_confidence_bar(probs[i])} {probs[i]*100:.1f}%")
|
700 |
-
|
701 |
# ===Detailed results tabs===
|
702 |
tab1, tab2, tab3 = st.tabs(
|
703 |
-
["
|
704 |
|
705 |
with tab1:
|
706 |
-
|
707 |
-
|
708 |
-
|
709 |
-
|
710 |
-
|
711 |
-
|
712 |
-
|
713 |
-
|
714 |
-
|
715 |
-
|
716 |
-
|
717 |
-
|
718 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
719 |
|
720 |
with tab2:
|
721 |
-
st.
|
722 |
-
|
723 |
-
|
724 |
-
|
725 |
-
|
726 |
-
|
727 |
-
|
728 |
-
"
|
729 |
-
|
730 |
-
|
731 |
-
|
732 |
-
|
733 |
-
|
734 |
-
|
735 |
-
|
736 |
-
|
737 |
-
|
738 |
-
|
739 |
-
|
740 |
-
|
741 |
-
|
742 |
-
|
743 |
-
|
744 |
-
|
745 |
-
|
746 |
-
|
747 |
-
|
748 |
-
|
749 |
-
|
750 |
-
|
751 |
-
|
752 |
-
|
753 |
-
|
754 |
-
|
755 |
-
|
756 |
-
|
757 |
-
|
758 |
-
|
759 |
-
|
760 |
-
|
761 |
-
|
762 |
-
|
763 |
-
|
764 |
-
|
765 |
-
|
766 |
-
st.markdown("**Resampler Info")
|
767 |
-
st.json({
|
768 |
-
"module": resampler_mod,
|
769 |
-
"doc": resampler_doc,
|
770 |
-
**({"y_resampled_stats": diag} if diag else {})
|
771 |
-
})
|
772 |
-
except Exception as _e:
|
773 |
-
st.warning(f"Diagnostics skipped: {_e}")
|
774 |
|
775 |
with tab3:
|
776 |
st.markdown("""
|
@@ -803,21 +906,19 @@ def main():
|
|
803 |
st.error(
|
804 |
"❌ Missing spectrum data. Please upload a file and run analysis.")
|
805 |
else:
|
806 |
-
#
|
807 |
st.markdown("""
|
808 |
-
|
809 |
-
|
810 |
-
|
811 |
-
|
812 |
-
2. 📁 Upload a Raman spectrum file or choose a sample
|
813 |
-
3. ▶️ Click "Run Analysis" to get predictions
|
814 |
|
815 |
-
|
816 |
- Text files (.txt) with wavenumber and intensity columns
|
817 |
- Space or comma-separated values
|
818 |
- Any length (automatically resampled to 500 points)
|
819 |
|
820 |
-
|
821 |
- 🔬 Research on polymer degradation
|
822 |
- ♻️ Recycling feasibility assessment
|
823 |
- 🌱 Sustainability impact studies
|
|
|
40 |
initial_sidebar_state="expanded"
|
41 |
)
|
42 |
|
|
|
|
|
43 |
st.markdown("""
|
44 |
<style>
|
45 |
+
/* Keep only scoped utility styles; no .block-container edits */
|
46 |
+
|
47 |
+
/* Tabs content area height (your original intent) */
|
48 |
+
div[data-testid="stTabs"] > div[role="tablist"] + div { min-height: 420px; }
|
49 |
+
|
50 |
+
/* Compact info box for confidence bar */
|
51 |
+
.confbox {
|
52 |
+
font-family: ui-monospace, SFMono-Regular, Menlo, Consolas, monospace;
|
53 |
+
font-size: 0.95rem;
|
54 |
+
padding: 8px 10px; border: 1px solid rgba(0,0,0,.07);
|
55 |
+
border-radius: 8px; background: rgba(0,0,0,.02);
|
56 |
+
}
|
57 |
+
|
58 |
+
/* Clean key–value rows for technical info */
|
59 |
+
.kv-row { display:flex; justify-content:space-between;
|
60 |
+
border-bottom: 1px dotted rgba(0,0,0,.10); padding: 3px 0; gap: 12px; }
|
61 |
+
.kv-key { opacity:.75; font-size: 0.92rem; white-space: nowrap; }
|
62 |
+
.kv-val { font-family: ui-monospace, SFMono-Regular, Menlo, Consolas, monospace;
|
63 |
+
overflow-wrap: anywhere; }
|
64 |
+
|
65 |
+
/* Ensure markdown h5 headings remain visible after layout shifts */
|
66 |
+
:where(h5, .stMarkdown h5) { margin-top: 0.25rem; }
|
67 |
+
|
68 |
+
/* === Base Expander Header === */
|
69 |
+
div.stExpander > details > summary {
|
70 |
+
display: flex;
|
71 |
+
align-items: center;
|
72 |
+
justify-content: space-between;
|
73 |
+
list-style: none; /* remove default arrow */
|
74 |
+
cursor: pointer;
|
75 |
+
border: 1px solid rgba(0,0,0,.15);
|
76 |
+
border-left: 4px solid #9ca3af; /* default gray accent */
|
77 |
+
border-radius: 6px;
|
78 |
+
padding: 6px 12px;
|
79 |
+
margin: 6px 0;
|
80 |
+
background: rgba(0,0,0,0.04);
|
81 |
+
font-weight: 600;
|
82 |
+
font-size: 0.92rem;
|
83 |
+
}
|
84 |
+
|
85 |
+
/* Remove ugly default disclosure triangle */
|
86 |
+
div.stExpander > details > summary::-webkit-details-marker {
|
87 |
+
display: none;
|
88 |
+
}
|
89 |
+
div.stExpander > details > summary::marker {
|
90 |
+
display: none;
|
91 |
+
}
|
92 |
+
|
93 |
+
/* Hover/active subtlety */
|
94 |
+
div.stExpander > details[open] > summary {
|
95 |
+
background: rgba(0,0,0,0.06);
|
96 |
+
}
|
97 |
+
|
98 |
+
/* Hide Streamlit's custom arrow icon inside expanders */
|
99 |
+
div[data-testid="stExpander"] summary svg {
|
100 |
+
display: none !important;
|
101 |
+
}
|
102 |
+
|
103 |
+
/* === Right Badge === */
|
104 |
+
div.stExpander > details > summary::after {
|
105 |
+
content: "MORE ↓";
|
106 |
+
font-size: 0.70rem;
|
107 |
+
font-weight: 600;
|
108 |
+
letter-spacing: .04em;
|
109 |
+
padding: 2px 8px;
|
110 |
+
border-radius: 999px;
|
111 |
+
margin-left: auto;
|
112 |
+
background: #e5e7eb;
|
113 |
+
color: #111827;
|
114 |
+
}
|
115 |
+
|
116 |
+
/* === Variants by Keyword === */
|
117 |
+
div.stExpander:has(summary:contains("Prediction")) > details > summary {
|
118 |
+
border-left-color: #2e7d32;
|
119 |
+
background: rgba(46,125,50,0.08);
|
120 |
+
}
|
121 |
+
div.stExpander:has(summary:contains("Prediction")) > details > summary::after {
|
122 |
+
content: "RESULTS";
|
123 |
+
background: rgba(46,125,50,0.15); color: #184a1d;
|
124 |
+
}
|
125 |
+
|
126 |
+
div.stExpander:has(summary:contains("Technical")) > details > summary {
|
127 |
+
border-left-color: #ed6c02;
|
128 |
+
background: rgba(237,108,2,0.08);
|
129 |
+
}
|
130 |
+
div.stExpander:has(summary:contains("Technical")) > details > summary::after {
|
131 |
+
content: "ADVANCED";
|
132 |
+
background: rgba(237,108,2,0.18); color: #7a3d00;
|
133 |
+
}
|
134 |
+
|
135 |
+
/* === FONT SIZE STANDARDIZATION === */
|
136 |
+
|
137 |
+
/* Sidebar metrics (Accuracy, F1 Score) */
|
138 |
+
div[data-testid="stMetricValue"] {
|
139 |
+
font-size: 0.95rem !important; /* uniform body size */
|
140 |
+
}
|
141 |
+
div[data-testid="stMetricLabel"] {
|
142 |
+
font-size: 0.85rem !important;
|
143 |
+
opacity: 0.85;
|
144 |
+
}
|
145 |
+
|
146 |
+
/* Sidebar expander text */
|
147 |
+
section[data-testid="stSidebar"] .stMarkdown p {
|
148 |
+
font-size: 0.92rem !important;
|
149 |
+
line-height: 1.4;
|
150 |
+
}
|
151 |
+
|
152 |
+
/* Diagnostics tab metrics (Logits) */
|
153 |
+
div[data-testid="stMetricValue"] {
|
154 |
+
font-size: 0.95rem !important;
|
155 |
+
}
|
156 |
+
div[data-testid="stMetricLabel"] {
|
157 |
+
font-size: 0.85rem !important;
|
158 |
+
}
|
159 |
+
|
160 |
+
|
161 |
</style>
|
162 |
""", unsafe_allow_html=True)
|
163 |
|
164 |
+
|
165 |
# Constants
|
166 |
TARGET_LEN = 500
|
167 |
SAMPLE_DATA_DIR = Path("sample_data")
|
|
|
176 |
"Figure2CNN (Baseline)": {
|
177 |
"class": Figure2CNN,
|
178 |
"path": f"{MODEL_WEIGHTS_DIR}/figure2_model.pth",
|
179 |
+
"emoji": "",
|
180 |
"description": "Baseline CNN with standard filters",
|
181 |
"accuracy": "94.80%",
|
182 |
"f1": "94.30%"
|
|
|
184 |
"ResNet1D (Advanced)": {
|
185 |
"class": ResNet1D,
|
186 |
"path": f"{MODEL_WEIGHTS_DIR}/resnet_model.pth",
|
187 |
+
"emoji": "",
|
188 |
"description": "Residual CNN with deeper feature learning",
|
189 |
"accuracy": "96.20%",
|
190 |
"f1": "95.90%"
|
|
|
197 |
|
198 |
# === UTILITY FUNCTIONS ===
|
199 |
def init_session_state():
|
200 |
+
"""Keep a persistent session state"""
|
201 |
defaults = {
|
202 |
"status_message": "Ready to analyze polymer spectra 🔬",
|
203 |
"status_type": "info",
|
|
|
370 |
plt.close(fig) # Prevent memory leaks
|
371 |
|
372 |
return Image.open(buf)
|
373 |
+
|
374 |
+
def _pct(p: float) -> str:
|
375 |
+
# Fixed-width percent like " 98.7%" or " 2.3%"
|
376 |
+
return f"{float(p)*100:5.1f}%"
|
377 |
+
|
378 |
+
def render_confidence_progress(
|
379 |
+
probs: np.ndarray,
|
380 |
+
labels: list[str] = ["Stable", "Weathered"],
|
381 |
+
highlight_idx: int | None = None,
|
382 |
+
side_by_side: bool = True
|
383 |
+
):
|
384 |
+
"""Render Streamlit native progress bars (0 - 100). Optionally bold the winning class
|
385 |
+
and place the two bars side-by-side for compactness."""
|
386 |
+
p = np.asarray(probs, dtype=float)
|
387 |
+
p = np.clip(p, 0.0, 1.0)
|
388 |
+
|
389 |
+
def _title(i: int, lbl: str, val: float) -> str:
|
390 |
+
t = f"{lbl} - {val*100:.1f}%"
|
391 |
+
return f"**{t}**" if (highlight_idx is not None and i == highlight_idx) else t
|
392 |
+
|
393 |
+
if side_by_side:
|
394 |
+
cols = st.columns(len(labels))
|
395 |
+
for i, (lbl, val, col) in enumerate(zip(labels, p, cols)):
|
396 |
+
with col:
|
397 |
+
st.markdown(_title(i, lbl, float(val)))
|
398 |
+
st.progress(int(round(val * 100)))
|
399 |
+
else:
|
400 |
+
for i, (lbl, val) in enumerate(zip(labels, p)):
|
401 |
+
st.markdown(_title(i, lbl, float(val)))
|
402 |
+
st.progress(int(round(val * 100)))
|
403 |
+
|
404 |
|
405 |
+
|
406 |
+
|
407 |
+
|
408 |
+
|
409 |
+
def render_kv_grid(d: dict, ncols: int = 2):
|
410 |
+
"""Display dict as a clean grid of key/value rows."""
|
411 |
+
if not d:
|
412 |
+
return
|
413 |
+
items = list(d.items())
|
414 |
+
cols = st.columns(ncols)
|
415 |
+
for i, (k, v) in enumerate(items):
|
416 |
+
with cols[i % ncols]:
|
417 |
+
st.markdown(
|
418 |
+
f"<div class='kv-row'><span class='kv-key'>{k}</span>"
|
419 |
+
f"<span class='kv-val'>{v}</span></div>",
|
420 |
+
unsafe_allow_html=True
|
421 |
+
)
|
422 |
+
|
423 |
+
|
424 |
+
|
425 |
+
|
426 |
+
def render_model_meta(model_choice: str):
|
427 |
+
info = MODEL_CONFIG.get(model_choice, {})
|
428 |
+
emoji = info.get("emoji", "")
|
429 |
+
desc = info.get("description", "").strip()
|
430 |
+
acc = info.get("accuracy", "-")
|
431 |
+
f1 = info.get("f1", "-")
|
432 |
+
|
433 |
+
st.caption(f"{emoji} **Model Snapshot** - {model_choice}")
|
434 |
+
cols = st.columns(2)
|
435 |
+
with cols[0]:
|
436 |
+
st.metric("Accuracy", acc)
|
437 |
+
with cols[1]:
|
438 |
+
st.metric("F1 Score", f1)
|
439 |
+
if desc:
|
440 |
+
st.caption(desc)
|
441 |
|
442 |
|
443 |
def get_confidence_description(logit_margin):
|
|
|
508 |
st.session_state["status_type"] = "info"
|
509 |
|
510 |
def reset_ephemeral_state():
|
511 |
+
"""remove everything except KEPT global UI context"""
|
512 |
for k in list(st.session_state.keys()):
|
513 |
if k not in KEEP_KEYS:
|
514 |
st.session_state.pop(k, None)
|
|
|
533 |
|
534 |
st.rerun()
|
535 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
536 |
# Main app
|
537 |
def main():
|
538 |
init_session_state()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
539 |
|
540 |
# Sidebar
|
541 |
with st.sidebar:
|
542 |
+
# Header
|
543 |
+
st.header("AI-Driven Polymer Classification")
|
544 |
+
st.caption("Predict polymer degradation (Stable vs Weathered) from Raman spectra using validated CNN models. — v0.1")
|
545 |
+
model_labels = [f"{MODEL_CONFIG[name]['emoji']} {name}" for name in MODEL_CONFIG.keys()]
|
546 |
+
selected_label = st.selectbox("Choose AI Model", model_labels, key="model_select", on_change=on_model_change)
|
547 |
+
model_choice = selected_label.split(" ", 1)[1]
|
|
|
|
|
|
|
|
|
|
|
548 |
|
549 |
+
# ===Compact metadata directly under dropdown===
|
550 |
+
render_model_meta(model_choice)
|
|
|
|
|
551 |
|
552 |
+
# ===Collapsed info to reduce clutter===
|
553 |
+
with st.expander("About This App",icon=":material/info:", expanded=False):
|
554 |
+
st.markdown("""
|
555 |
+
AI-Driven Polymer Aging Prediction and Classification
|
556 |
|
557 |
+
**Purpose**: Classify polymer degradation using AI
|
558 |
+
**Input**: Raman spectroscopy `.txt` files
|
559 |
+
**Models**: CNN architectures for binary classification
|
560 |
+
**Next**: More trained CNNs in evaluation pipeline
|
561 |
|
562 |
+
---
|
563 |
|
564 |
+
**Contributors**
|
565 |
+
Dr. Sanmukh Kuppannagari (Mentor)
|
566 |
+
Dr. Metin Karailyan (Mentor)
|
567 |
+
👨💻 Jaser Hasan (Author)
|
|
|
568 |
|
569 |
+
---
|
|
|
570 |
|
571 |
+
**Links**
|
572 |
+
🔗 [Live HF Space](https://huggingface.co/spaces/dev-jas/polymer-aging-ml)
|
573 |
+
📂 [GitHub Repository](https://github.com/KLab-AI3/ml-polymer-recycling)
|
574 |
|
575 |
+
---
|
|
|
|
|
|
|
|
|
|
|
|
|
576 |
|
577 |
+
**Citation Figure2CNN (baseline)**
|
578 |
+
Neo et al., 2023, *Resour. Conserv. Recycl.*, 188, 106718.
|
579 |
+
[https://doi.org/10.1016/j.resconrec.2022.106718](https://doi.org/10.1016/j.resconrec.2022.106718)
|
580 |
+
""")
|
|
|
|
|
|
|
|
|
|
|
|
|
581 |
|
582 |
# Main content area
|
583 |
+
col1, col2 = st.columns([1, 1.35], gap="small")
|
584 |
|
585 |
with col1:
|
586 |
+
st.markdown("##### Data Input")
|
587 |
|
588 |
mode = st.radio(
|
589 |
"Input mode",
|
|
|
619 |
st.session_state["status_type"] = "success"
|
620 |
|
621 |
if up:
|
622 |
+
st.markdown(f"✅ Loaded: {up.name}")
|
623 |
|
624 |
# ---- Sample tab ----
|
625 |
else:
|
|
|
634 |
on_change=on_sample_change, # <-- critical
|
635 |
)
|
636 |
if sel != "-- Select Sample --":
|
637 |
+
st.markdown(f"✅ Loaded sample: {sel}")
|
638 |
else:
|
639 |
st.info("No sample data available")
|
640 |
|
641 |
# ---- Status box ----
|
642 |
+
st.markdown("##### Status")
|
643 |
msg = st.session_state.get("status_message", "Ready")
|
644 |
typ = st.session_state.get("status_type", "info")
|
645 |
if typ == "success":
|
|
|
688 |
r1, r2 = resample_spectrum(x_raw, y_raw, TARGET_LEN)
|
689 |
|
690 |
def _is_strictly_increasing(a):
|
691 |
+
a = np.asarray(a)
|
692 |
+
return a.ndim == 1 and a.size >= 2 and np.all(np.diff(a) > 0)
|
|
|
|
|
|
|
693 |
|
694 |
if _is_strictly_increasing(r1) and not _is_strictly_increasing(r2):
|
695 |
x_resampled, y_resampled = np.asarray(r1), np.asarray(r2)
|
|
|
724 |
# Results column
|
725 |
with col2:
|
726 |
if st.session_state.get("inference_run_once", False):
|
727 |
+
st.markdown("##### Analysis Results")
|
728 |
|
729 |
# Get data from session state
|
730 |
x_raw = st.session_state.get('x_raw')
|
|
|
782 |
predicted_class = LABEL_MAP.get(
|
783 |
int(prediction), f"Class {int(prediction)}")
|
784 |
|
785 |
+
# === confidence metrics ===
|
786 |
logit_margin = abs(
|
787 |
logits_list[0] - logits_list[1]) if len(logits_list) >= 2 else 0
|
788 |
confidence_desc, confidence_emoji = get_confidence_description(
|
789 |
logit_margin)
|
790 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
791 |
# ===Detailed results tabs===
|
792 |
tab1, tab2, tab3 = st.tabs(
|
793 |
+
["Details", "Technical", "Explanation"])
|
794 |
|
795 |
with tab1:
|
796 |
+
# Main prediction
|
797 |
+
st.markdown(f"""
|
798 |
+
**Sample**: `{filename}`
|
799 |
+
**Model**: `{model_choice}`
|
800 |
+
**Processing Time**: `{inference_time:.2f}s`
|
801 |
+
""")
|
802 |
+
|
803 |
+
# ===Prediction box && Confidence Margin===
|
804 |
+
with st.expander("Prediction/Ground Truth & Model Confidence Margin", expanded=False):
|
805 |
+
if predicted_class == "Stable (Unweathered)":
|
806 |
+
st.markdown(f"🟢 **Prediction**: {predicted_class}")
|
807 |
+
else:
|
808 |
+
st.markdown(f"🟡 **Prediction**: {predicted_class}")
|
809 |
+
st.markdown(
|
810 |
+
f"**{confidence_emoji} Confidence**: {confidence_desc} (margin: {logit_margin:.1f})")
|
811 |
+
# Ground truth comparison
|
812 |
+
if true_label_idx is not None:
|
813 |
+
if predicted_class == true_label_str:
|
814 |
+
st.markdown(
|
815 |
+
f"✅ **Ground Truth**: {true_label_str} - **Correct!**")
|
816 |
+
else:
|
817 |
+
st.markdown(
|
818 |
+
f"❌ **Ground Truth**: {true_label_str} - **Incorrect**")
|
819 |
+
else:
|
820 |
+
st.markdown(
|
821 |
+
"**Ground Truth**: Unknown (filename doesn't follow naming convention)")
|
822 |
+
|
823 |
+
st.markdown("###### Confidence Overview")
|
824 |
+
render_confidence_progress(
|
825 |
+
probs,
|
826 |
+
labels=["Stable", "Weathered"],
|
827 |
+
highlight_idx=int(prediction),
|
828 |
+
side_by_side=True, # Set false for stacked <<
|
829 |
+
)
|
830 |
+
|
831 |
|
832 |
with tab2:
|
833 |
+
with st.expander("Diagnostics/Technical Info (advanced)", expanded=False):
|
834 |
+
st.markdown("###### Model Output (Logits)")
|
835 |
+
cols = st.columns(2)
|
836 |
+
for i, score in enumerate(logits_list):
|
837 |
+
label = LABEL_MAP.get(i, f"Class {i}")
|
838 |
+
(cols[i % 2]).metric(label, f"{score:.2f}")
|
839 |
+
|
840 |
+
st.markdown("###### Spectrum Statistics")
|
841 |
+
spec_stats = {
|
842 |
+
"Original Length": len(x_raw) if x_raw is not None else 0,
|
843 |
+
"Resampled Length": TARGET_LEN,
|
844 |
+
"Wavenumber Range": f"{min(x_raw):.1f}–{max(x_raw):.1f} cm⁻¹" if x_raw is not None else "N/A",
|
845 |
+
"Intensity Range": f"{min(y_raw):.1f}–{max(y_raw):.1f}" if y_raw is not None else "N/A",
|
846 |
+
"Confidence Bucket": confidence_desc,
|
847 |
+
}
|
848 |
+
render_kv_grid(spec_stats, ncols=2)
|
849 |
+
st.markdown("---")
|
850 |
+
|
851 |
+
st.markdown("###### Model Statistics")
|
852 |
+
model_path = MODEL_CONFIG[model_choice]["path"]
|
853 |
+
mtime = os.path.getmtime(model_path) if os.path.exists(model_path) else None
|
854 |
+
file_hash = (
|
855 |
+
hashlib.md5(open(model_path, 'rb').read()).hexdigest()
|
856 |
+
if os.path.exists(model_path) else "N/A"
|
857 |
+
)
|
858 |
+
model_stats = {
|
859 |
+
"Architecture": model_choice,
|
860 |
+
"Model Path": model_path,
|
861 |
+
"Weights Last Modified": time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(mtime)) if mtime else "N/A",
|
862 |
+
"Weights Hash (md5)": file_hash,
|
863 |
+
"Input Shape": list(input_tensor.shape),
|
864 |
+
"Output Shape": list(logits.shape),
|
865 |
+
"Inference Time": f"{inference_time:.3f}s",
|
866 |
+
"Device": "CPU",
|
867 |
+
"Model Loaded": model_loaded,
|
868 |
+
}
|
869 |
+
render_kv_grid(model_stats, ncols=2)
|
870 |
+
|
871 |
+
st.markdown("---")
|
872 |
+
|
873 |
+
|
874 |
+
st.markdown("###### Debug Log")
|
875 |
+
st.text_area("Logs", "\n".join(st.session_state.get("log_messages", [])), height=110)
|
876 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
877 |
|
878 |
with tab3:
|
879 |
st.markdown("""
|
|
|
906 |
st.error(
|
907 |
"❌ Missing spectrum data. Please upload a file and run analysis.")
|
908 |
else:
|
909 |
+
# ===Getting Started===
|
910 |
st.markdown("""
|
911 |
+
##### Get started by:
|
912 |
+
1. Select an AI model in the sidebar
|
913 |
+
2. Upload a Raman spectrum file or choose a sample
|
914 |
+
3. Click "Run Analysis" to get predictions
|
|
|
|
|
915 |
|
916 |
+
##### Supported formats:
|
917 |
- Text files (.txt) with wavenumber and intensity columns
|
918 |
- Space or comma-separated values
|
919 |
- Any length (automatically resampled to 500 points)
|
920 |
|
921 |
+
##### Example applications:
|
922 |
- 🔬 Research on polymer degradation
|
923 |
- ♻️ Recycling feasibility assessment
|
924 |
- 🌱 Sustainability impact studies
|