devjas1 commited on
Commit
346c859
·
1 Parent(s): f7cba14

(CHORE)[Cleanup & Dependency Update]: Refine .gitignore, update requirements, and remove obsolete files

Browse files

- Refactored .gitignore:
- Removed duplicate entries and grouped patterns by category (Python, IDE, notebooks, Streamlit cache, model artifacts, data outputs, office docs).
- Improved maintainability and clarity for future development.
- Updated requirements.txt:
- Added new dependencies for async processing, batch utilities, performance tracking, model optimization, advanced UI, and Hugging Face/Streamlit compatibility (psutil, joblib, tenacity, async-lru, pyarrow, mermaid_cli, etc.).
- Ensured compatibility with recent codebase enhancements.
- Removed obsolete documentation files (CODEBASE_INVENTORY.md, PIPELINE_ANALYSIS_REPORT.md) and deprecated Streamlit pages (Collaborative_Research.py, Educational_Interface.py) to streamline the repository.
- Added __pycache__.py as a placeholder for Python cache directory to support consistent environment setup.

.gitignore CHANGED
@@ -1,29 +1,121 @@
1
- # Ignore raw data and system clutter
2
-
3
- datasets/
4
  __pycache__/
5
  *.pyc
 
 
 
 
 
 
6
  .DS_store
7
- *.zip
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
  *.h5
 
 
 
 
 
 
 
 
 
 
9
  *.log
10
  *.env
11
  *.yml
12
  *.json
13
  *.sh
14
- .streamlit
15
- outputs/logs/
 
 
 
 
16
  docs/PROJECT_REPORT.md
17
- wea-*.txt
18
- sta-*.txt
19
  S3PR.md
20
 
 
 
 
 
 
21
 
22
- # --- Data (keep folder, ignore files) ---
23
- datasets/**
24
- !datasets/.gitkeep
25
- !datasets/.README.md
26
- # ---------------------------------------
27
-
28
- __pycache__.py
29
- outputs/performance_tracking.db
 
 
1
+ # =========================
2
+ # General Python & System
3
+ # =========================
4
  __pycache__/
5
  *.pyc
6
+ *.pyo
7
+ *.bak
8
+ *.tmp
9
+ *.swp
10
+ *.swo
11
+ *.orig
12
  .DS_store
13
+ Thumbs.db
14
+ ehthumbs.db
15
+ Desktop.ini
16
+
17
+ # =========================
18
+ # IDE & Editor Settings
19
+ # =========================
20
+ .vscode/
21
+ *.code-workspace
22
+
23
+ # =========================
24
+ # Jupyter Notebooks
25
+ # =========================
26
+ *.ipynb
27
+ .ipynb_checkpoints/
28
+
29
+ # =========================
30
+ # Streamlit Cache & Temp
31
+ # =========================
32
+ .streamlit/
33
+ **/.streamlit/
34
+ **/.streamlit_cache/
35
+ **/.streamlit_temp/
36
+
37
+ # =========================
38
+ # Virtual Environments & Build
39
+ # =========================
40
+ venv/
41
+ env/
42
+ .polymer_env/
43
+ *.egg-info/
44
+ dist/
45
+ build/
46
+
47
+ # =========================
48
+ # Test & Coverage Outputs
49
+ # =========================
50
+ htmlcov/
51
+ .coverage
52
+ .tox/
53
+ .cache/
54
+ pytest_cache/
55
+ *.cover
56
+
57
+ # =========================
58
+ # Data & Outputs
59
+ # =========================
60
+ datasets/
61
+ deferred/
62
+ outputs/logs/
63
+ outputs/performance_tracking.db
64
+ outputs/*.csv
65
+ outputs/*.json
66
+ outputs/*.png
67
+ outputs/*.jpg
68
+ outputs/*.pdf
69
+
70
+ # --- Data (keep folder, ignore files) ---
71
+ datasets/**
72
+ !datasets/.gitkeep
73
+ !datasets/.README.md
74
+
75
+ # =========================
76
+ # Model Artifacts
77
+ # =========================
78
+ *.pth
79
+ *.pt
80
+ *.ckpt
81
+ *.onnx
82
  *.h5
83
+
84
+ # =========================
85
+ # Miscellaneous Large/Export Files
86
+ # =========================
87
+ *.zip
88
+ *.gz
89
+ *.tar
90
+ *.tar.gz
91
+ *.rar
92
+ *.7z
93
  *.log
94
  *.env
95
  *.yml
96
  *.json
97
  *.sh
98
+ *.sqlite3
99
+ *.db
100
+
101
+ # =========================
102
+ # Documentation & Reports
103
+ # =========================
104
  docs/PROJECT_REPORT.md
 
 
105
  S3PR.md
106
 
107
+ # =========================
108
+ # Project-specific Data Files
109
+ # =========================
110
+ wea-*.txt
111
+ sta-*.txt
112
 
113
+ # =========================
114
+ # Office Documents
115
+ # =========================
116
+ *.xls
117
+ *.xlsx
118
+ *.ppt
119
+ *.pptx
120
+ *.doc
121
+ *.docx
CODEBASE_INVENTORY.md DELETED
@@ -1,435 +0,0 @@
1
- # Comprehensive Codebase Audit: Polymer Aging ML Platform
2
-
3
- ## Executive Summary
4
-
5
- This audit provides a technical inventory of the dev-jas/polymer-aging-ml repository—a modular machine learning platform for polymer degradation classification using Raman and FTIR spectroscopy. The system features robust error handling, multi-format batch processing, and persistent performance tracking, making it suitable for research, education, and industrial applications.
6
-
7
- ## 🏗️ System Architecture
8
-
9
- ### Core Infrastructure
10
-
11
- - **Streamlit-based web app** (`app.py`) as the main interface
12
- - **PyTorch** for deep learning
13
- - **Docker** for deployment
14
- - **SQLite** (`outputs/performance_tracking.db`) for performance metrics
15
- - **Plugin-based model registry** for extensibility
16
-
17
- ### Directory Structure
18
-
19
- - **app.py**: Main Streamlit application
20
- - **README.md**: Project documentation
21
- - **Dockerfile**: Containerization (Python 3.13-slim)
22
- - **requirements.txt**: Dependency management
23
- - **models/**: Neural network architectures and registry
24
- - **utils/**: Shared utilities (preprocessing, batch, results, performance, errors, confidence)
25
- - **scripts/**: CLI tools for training, inference, data management
26
- - **outputs/**: Model weights, inference results, performance DB
27
- - **sample_data/**: Demo spectrum files
28
- - **tests/**: Unit tests (PyTest)
29
- - **datasets/**: Data storage
30
- - **pages/**: Streamlit dashboard pages
31
-
32
- ## 🤖 Machine Learning Framework
33
-
34
- ### Model Registry
35
-
36
- Factory pattern in `models/registry.py` enables dynamic model selection:
37
-
38
- ```python
39
- _REGISTRY: Dict[str, Callable[[int], object]] = {
40
- "figure2": lambda L: Figure2CNN(input_length=L),
41
- "resnet": lambda L: ResNet1D(input_length=L),
42
- "resnet18vision": lambda L: ResNet18Vision(input_length=L)
43
- }
44
- ```
45
-
46
- ### Neural Network Architectures
47
-
48
- The platform supports three architectures, offering diverse options for spectral analysis:
49
-
50
- **Figure2CNN (Baseline Model):**
51
-
52
- - Architecture: 4 convolutional layers (1→16→32→64→128), 3 fully connected layers (256→128→2).
53
- - Performance: 94.80% accuracy, 94.30% F1-score (Raman-only).
54
- - Parameters: ~500K, supports dynamic input handling.
55
-
56
- **ResNet1D (Advanced Model):**
57
-
58
- - Architecture: 3 residual blocks with 1D skip connections.
59
- - Performance: 96.20% accuracy, 95.90% F1-score.
60
- - Parameters: ~100K, efficient via global average pooling.
61
-
62
- **ResNet18Vision (Experimental):**
63
-
64
- - Architecture: 1D-adapted ResNet-18 with 4 layers (2 blocks each).
65
- - Status: Under evaluation, ~11M parameters.
66
- - Opportunity: Expand validation for broader spectral applications.
67
-
68
- ## 🔧 Data Processing Infrastructure
69
-
70
- ### Preprocessing Pipeline
71
-
72
- The system implements a **modular preprocessing pipeline** in `utils/preprocessing.py` with five configurable stages:
73
- **1. Input Validation Framework:**
74
-
75
- - File format verification (`.txt` files exclusively)
76
- - Minimum data points validation (≥10 points required)
77
- - Wavenumber range validation (0-10,000 cm⁻¹ for Raman spectroscopy)
78
- - Monotonic sequence verification for spectral consistency
79
- - NaN value detection and automatic rejection
80
-
81
- **2. Core Processing Steps:**
82
-
83
- - **Linear Resampling**: Uniform grid interpolation to 500 points using `scipy.interpolate.interp1d`
84
- - **Baseline Correction**: Polynomial detrending (configurable degree, default=2)
85
- - **Savitzky-Golay Smoothing**: Noise reduction (window=11, order=2, configurable)
86
- - **Min-Max Normalization**: Scaling to range with constant-signal protection
87
-
88
- ### Batch Processing Framework
89
-
90
- The `utils/multifile.py` module (12.5 kB) provides **enterprise-grade batch processing** capabilities:
91
-
92
- - **Multi-File Upload**: Streamlit widget supporting simultaneous file selection
93
- - **Error-Tolerant Processing**: Individual file failures don't interrupt batch operations
94
- - **Progress Tracking**: Real-time processing status with callback mechanisms
95
- - **Results Aggregation**: Comprehensive success/failure reporting with export options
96
- - **Memory Management**: Automatic cleanup between file processing iterations
97
-
98
- ## 🖥️ User Interface Architecture
99
-
100
- ### Streamlit Application Design
101
-
102
- The main application implements a **sophisticated two-column layout** with comprehensive state management:[^1_2]
103
-
104
- **Left Column - Control Panel:**
105
-
106
- - **Model Selection**: Dropdown with real-time performance metrics display
107
- - **Input Modes**: Three processing modes (Single Upload, Batch Upload, Sample Data)
108
- - **Status Indicators**: Color-coded feedback system for user guidance
109
- - **Form Submission**: Validated input handling with disabled state management
110
-
111
- **Right Column - Results Display:**
112
-
113
- - **Tabbed Interface**: Details, Technical diagnostics, and Scientific explanation
114
- - **Interactive Visualization**: Confidence progress bars with color coding
115
- - **Spectrum Analysis**: Side-by-side raw vs. processed spectrum plotting
116
- - **Technical Diagnostics**: Model metadata, processing times, and debug logs
117
-
118
- ### State Management System
119
-
120
- The application employs **advanced session state management**:
121
-
122
- - Persistent state across Streamlit reruns using `st.session_state`
123
- - Intelligent caching with content-based hash keys for expensive operations
124
- - Memory cleanup protocols after inference operations
125
- - Version-controlled file uploader widgets to prevent state conflicts
126
-
127
- ## 🛠️ Utility Infrastructure
128
-
129
- ### Centralized Error Handling
130
-
131
- The `utils/errors.py` module provides with **context-aware** logging and user-friendly error messages.
132
-
133
- ### Performance Tracking System
134
-
135
- The `utils/performance_tracker.py` module provides a robust system for logging and analyzing performance metrics.
136
-
137
- - **Database Logging**: Persists metrics to a SQLite database.
138
- - **Automated Tracking**: Uses a context manager to automatically track inference time, preprocessing time, and memory usage.
139
- - **Dashboarding**: Includes functions to generate performance visualizations and summary statistics for the UI.
140
-
141
- ### Enhanced Results Management
142
-
143
- The `utils/results_manager.py` module enables comprehensive session and persistent results tracking.
144
-
145
- - **In-Memory Storage**: Manages results for the current session.
146
- - **Multi-Model Handling**: Aggregates results from multiple models for comparison.
147
- - **Export Capabilities**: Exports results to CSV and JSON.
148
- - **Statistical Analysis**: Calculates accuracy, confidence, and other metrics.
149
-
150
- ## 📜 Command-Line Interface
151
-
152
- ### Training Pipeline
153
-
154
- The `scripts/train_model.py` module (6.27 kB) implements **robust model training**:
155
-
156
- **Cross-Validation Framework:**
157
-
158
- - 10-fold stratified cross-validation for unbiased evaluation
159
- - Model registry integration supporting all architectures
160
- - Configurable preprocessing via command-line flags
161
- - Comprehensive JSON logging with confusion matrices
162
-
163
- **Reproducibility Features:**
164
-
165
- - Fixed random seeds (SEED=42) across all random number generators
166
- - Deterministic CUDA operations when GPU available
167
- - Standardized train/validation splitting methodology
168
-
169
- ### Data Utilities
170
-
171
- **File Discovery System:**
172
-
173
- - Recursive `.txt` file scanning with label extraction
174
- - Filename-based labeling convention (`sta-*` = stable, `wea-*` = weathered)
175
- - Dataset inventory generation with statistical summaries
176
-
177
- ### Dependency Management
178
-
179
- The `requirements.txt` specifies **core dependencies without version pinning**:[^1_12]
180
-
181
- - **Web Framework**: `streamlit` for interactive UI
182
- - **Deep Learning**: `torch`, `torchvision` for model execution
183
- - **Scientific Computing**: `numpy`, `scipy`, `scikit-learn` for data processing
184
- - **Visualization**: `matplotlib` for spectrum plotting
185
- - **API Framework**: `fastapi`, `uvicorn` for potential REST API expansion
186
-
187
- ## 🐳 Deployment Infrastructure
188
-
189
- ### Docker Configuration
190
-
191
- The Dockerfile uses Python 3.13-slim for efficient containerization:
192
-
193
- - Includes essential build tools and scientific libraries.
194
- - Supports health checks for container wellness.
195
- - **Roadmap**: Implement multi-stage builds and environment variables for streamlined deployments.
196
-
197
- ### Confidence Analysis System
198
-
199
- The `utils/confidence.py` module provides **scientific confidence metrics**
200
-
201
- **Softmax-Based Confidence:**
202
-
203
- - Normalized probability distributions from model logits
204
- - Three-tier confidence levels: HIGH (≥80%), MEDIUM (≥60%), LOW (<60%)
205
- - Color-coded visual indicators with emoji representations
206
- - Legacy compatibility with logit margin calculations
207
-
208
- ### Session Results Management
209
-
210
- The `utils/results_manager.py` module (8.16 kB) enables **comprehensive session tracking**:
211
-
212
- - **In-Memory Storage**: Session-wide results persistence
213
- - **Export Capabilities**: CSV and JSON download with timestamp formatting
214
- - **Statistical Analysis**: Automatic accuracy calculation when ground truth available
215
- - **Data Integrity**: Results survive page refreshes within session boundaries
216
-
217
- ## 🧪 Testing Framework
218
-
219
- ### Test Infrastructure
220
-
221
- The `tests/` directory implements **basic validation framework**:
222
-
223
- - **PyTest Configuration**: Centralized test settings in `conftest.py`
224
- - **Preprocessing Tests**: Core pipeline functionality validation in `test_preprocessing.py`
225
- - **Limited Coverage**: Currently covers preprocessing functions only
226
-
227
- **Testing Coming Soon:**
228
-
229
- - Add model architecture unit tests
230
- - Integration tests for UI components
231
- - Performance benchmarking tests
232
- - Improved error handling validation
233
-
234
- ## 🔍 Security \& Quality Assessment
235
-
236
- ### Input Validation Security
237
-
238
- **Robust Validation Framework:**
239
-
240
- - Strict file format enforcement preventing arbitrary file uploads
241
- - Content verification with numeric data type checking
242
- - Scientific range validation for spectroscopic data integrity
243
- - Memory safety through automatic cleanup and garbage collection
244
-
245
- ### Code Quality Metrics
246
-
247
- **Production Standards:**
248
-
249
- - **Type Safety**: Comprehensive type hints throughout codebase using Python 3.8+ syntax
250
- - **Documentation**: Inline docstrings following standard conventions
251
- - **Error Boundaries**: Multi-level exception handling with graceful degradation
252
- - **Logging**: Structured logging with appropriate severity levels
253
-
254
- ## 🚀 Extensibility Analysis
255
-
256
- ### Model Architecture Extensibility
257
-
258
- The **registry pattern enables seamless model addition**:
259
-
260
- 1. **Implementation**: Create new model class with standardized interface
261
- 2. **Registration**: Add to `models/registry.py` with factory function
262
- 3. **Integration**: Automatic UI and CLI support without code changes
263
- 4. **Validation**: Consistent input/output shape requirements
264
-
265
- ### Processing Pipeline Modularity
266
-
267
- **Configurable Architecture:**
268
-
269
- - Boolean flags control individual preprocessing steps
270
- - Easy integration of new preprocessing techniques
271
- - Backward compatibility through parameter defaulting
272
- - Single source of truth in `utils/preprocessing.py`
273
-
274
- ### Export \& Integration Capabilities
275
-
276
- **Multi-Format Support:**
277
-
278
- - CSV export for statistical analysis software
279
- - JSON export for programmatic integration
280
- - RESTful API potential through FastAPI foundation
281
- - Batch processing enabling high-throughput scenarios
282
-
283
- ## 📊 Performance Characteristics
284
-
285
- ### Computational Efficiency
286
-
287
- **Model Performance Metrics:**
288
-
289
- | Model | Parameters | Accuracy | F1-Score | Inference Time |
290
- | :------------- | :--------- | :--------------- | :--------------- | :--------------- |
291
- | Figure2CNN | ~500K | 94.80% | 94.30% | <1s per spectrum |
292
- | ResNet1D | ~100K | 96.20% | 95.90% | <1s per spectrum |
293
- | ResNet18Vision | ~11M | Under evaluation | Under evaluation | <2s per spectrum |
294
-
295
- **System Response Times:**
296
-
297
- - Single spectrum processing: <5 seconds end-to-end
298
- - Batch processing: Linear scaling with file count
299
- - Model loading: <3 seconds (cached after first load)
300
- - UI responsiveness: Real-time updates with progress indicators
301
-
302
- ### Memory Management
303
-
304
- **Optimization Strategies:**
305
-
306
- - Explicit garbage collection after inference operations[^1_2]
307
- - CUDA memory cleanup when GPU available
308
- - Session state pruning for long-running sessions
309
- - Caching with content-based invalidation
310
-
311
- ## 🔮 Strategic Development Roadmap
312
-
313
- The project roadmap has been updated to reflect recent progress:
314
-
315
- - [x] **FTIR Support**: Modular integration of FTIR spectroscopy is complete.
316
- - [x] **Multi-Model Dashboard**: A model comparison tab has been implemented.
317
- - [ ] **Image-based Inference**: Future work to include image-based polymer classification.
318
- - [x] **Performance Tracking**: A performance tracking dashboard has been implemented.
319
- - [ ] **Enterprise Integration**: Future work to include a RESTful API and more advanced database integration.
320
-
321
- ## 💼 Business Logic \& Scientific Workflow
322
-
323
- ### Classification Methodology
324
-
325
- **Binary Classification Framework:**
326
-
327
- - **Stable Polymers**: Well-preserved molecular structure suitable for recycling
328
- - **Weathered Polymers**: Oxidized bonds requiring additional processing
329
- - **Confidence Thresholds**: Scientific validation with visual indicators
330
- - **Ground Truth Validation**: Filename-based labeling for accuracy assessment
331
-
332
- ### Scientific Applications
333
-
334
- **Research Use Cases:**
335
-
336
- - Material science polymer degradation studies
337
- - Recycling viability assessment for circular economy
338
- - Environmental microplastic weathering analysis
339
- - Quality control in manufacturing processes
340
- - Longevity prediction for material aging
341
-
342
- ### Data Workflow Architecture
343
-
344
- ```text
345
- Input Validation → Spectrum Preprocessing → Model Inference →
346
- Confidence Analysis → Results Visualization → Export Options
347
- ```
348
-
349
- ## 🏁 Audit Conclusion
350
-
351
- This codebase represents a **well-architected, scientifically rigorous machine learning platform** with the following key characteristics:
352
-
353
- **Technical Excellence:**
354
-
355
- - Production-ready architecture with comprehensive error handling
356
- - Modular design supporting extensibility and maintainability
357
- - Scientific validation appropriate for spectroscopic data analysis
358
- - Clean separation between research functionality and production deployment
359
-
360
- **Scientific Rigor:**
361
-
362
- - Proper preprocessing pipeline validated for Raman spectroscopy
363
- - Multiple model architectures with performance benchmarking
364
- - Confidence metrics appropriate for scientific decision-making
365
- - Ground truth validation enabling accuracy assessment
366
-
367
- **Operational Readiness:**
368
-
369
- - Containerized deployment suitable for cloud platforms
370
- - Batch processing capabilities for high-throughput scenarios
371
- - Comprehensive export options for downstream analysis
372
- - Session management supporting extended research workflows
373
-
374
- **Development Quality:**
375
-
376
- - Type-safe Python implementation with modern language features
377
- - Comprehensive documentation supporting knowledge transfer
378
- - Modular architecture enabling team development
379
- - Testing framework foundation for continuous integration
380
-
381
- The platform successfully bridges academic research and practical application, providing both accessible web interface capabilities and automation-friendly command-line tools. The extensible architecture and comprehensive documentation indicate strong software engineering practices suitable for both research institutions and industrial applications.
382
-
383
- **Risk Assessment:** Low - The codebase demonstrates mature engineering practices with appropriate validation and error handling for production deployment.
384
-
385
- **Recommendation:** This platform is ready for production deployment, representing a solid foundation for polymer classification research and industrial applications.
386
-
387
- ### EXTRA
388
-
389
- ```text
390
- 1. Setup & Configuration (Lines 1-105)
391
- Imports: Standard libraries (os, sys, time), data science (numpy, torch, matplotlib), and Streamlit.
392
- Local Imports: Pulls from your existing utils and models directories.
393
- Constants: Global, hardcoded configuration variables.
394
- KEEP_KEYS: Defines which session state keys persist on reset.
395
- TARGET_LEN: A static preprocessing value.
396
- SAMPLE_DATA_DIR, MODEL_WEIGHTS_DIR: Path configurations.
397
- MODEL_CONFIG: A dictionary defining model paths, classes, and metadata.
398
- LABEL_MAP: A dictionary for mapping class indices to human-readable names.
399
- Page Setup:
400
- st.set_page_config(): Sets the browser tab title, icon, and layout.
401
- st.markdown(<style>...): A large, embedded multi-line string containing all the custom CSS for the application.
402
- 2. Core Logic & Data Processing (Lines 108-250)
403
- Model Handling:
404
- load_state_dict(): Cached function to load model weights from a file.
405
- load_model(): Cached resource to initialize a model class and load its weights.
406
- run_inference(): The main ML prediction function. It takes resampled data, loads the appropriate model, runs inference, and returns the results.
407
- Data I/O & Preprocessing:
408
- label_file(): Extracts the ground truth label from a filename.
409
- get_sample_files(): Lists the available .txt files in the sample data directory.
410
- parse_spectrum_data(): The crucial function for reading, validating, and parsing raw text input into numerical numpy arrays.
411
- Visualization:
412
- create_spectrum_plot(): Generates the "Raw vs. Resampled" matplotlib plot and returns it as an image.
413
- Helpers:
414
- cleanup_memory(): A utility for garbage collection.
415
- get_confidence_description(): Maps a logit margin to a human-readable confidence level.
416
- 3. State Management & Callbacks (Lines 253-335)
417
- Initialization:
418
- init_session_state(): The cornerstone of the app's state, defining all the default values in st.session_state.
419
- Widget Callbacks:
420
- on_sample_change(): Triggered when the user selects a sample file.
421
- on_input_mode_change(): Triggered by the main st.radio widget.
422
- on_model_change(): Triggered when the user selects a new model.
423
- Reset/Clear Functions:
424
- reset_results(): A soft reset that only clears inference artifacts.
425
- reset_ephemeral_state(): The "master reset" that clears almost all session state and forces a file uploader refresh.
426
- clear_batch_results(): A focused function to clear only the results in col2.
427
- 4. UI Rendering Components (Lines 338-End)
428
- Generic Components:
429
- render_kv_grid(): A reusable helper to display a dictionary in a neat grid.
430
- render_model_meta(): Renders the model's accuracy and F1 score in the sidebar.
431
- Main Application Layout (main()):
432
- Sidebar: Contains the header, model selector (st.selectbox), model metadata, and the "About" expander.
433
- Column 1 (Input): Contains the main st.radio for mode selection and the conditional logic to display the single file uploader, batch uploader, or sample selector. It also holds the "Run Analysis" and "Reset All" buttons.
434
- Column 2 (Results): Contains all the logic for displaying either the batch results or the detailed, tabbed results for a single file (Details, Technical, Explanation).
435
- ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
PIPELINE_ANALYSIS_REPORT.md DELETED
@@ -1,1016 +0,0 @@
1
- # ML Pipeline Analysis Report
2
-
3
- ## Executive Summary
4
-
5
- This report provides a comprehensive analysis of the machine learning pipeline for polymer degradation classification using Raman and FTIR spectroscopy data. The analysis focuses on codebase structure, data processing, feature extraction, model architecture, and specific UI bugs that impact functionality and user experience.
6
-
7
- ---
8
-
9
- ## Task 1: Codebase Structure Review
10
-
11
- ### Overview
12
-
13
- Analyzing the organization, dependencies, and UI integration of the polymer aging ML platform to understand its architecture and identify structural issues.
14
-
15
- ### Steps
16
-
17
- #### Step 1: Repository Structure Analysis
18
-
19
- **What**: Examined the overall codebase organization and file structure
20
- **How**: Explored directory structure, key modules, and dependencies across the entire repository
21
- **Why**: Understanding the architecture is essential for identifying bottlenecks and areas for improvement
22
-
23
- **Key Findings:**
24
-
25
- - **Modular Architecture**: Well-organized structure with separate modules for UI (`modules/`), models (`models/`), utilities (`utils/`), and preprocessing
26
- - **Streamlit-based UI**: Single-page application with tabbed interface (Standard Analysis, Model Comparison, Image Analysis, Performance Tracking)
27
- - **Model Registry System**: Centralized model management in `models/registry.py` with 6 available models
28
- - **Configuration Split**: Two configuration systems - `config.py` (legacy, 2 models) and `models/registry.py` (current, 6 models)
29
-
30
- #### Step 2: Dependency Analysis
31
-
32
- **What**: Reviewed imports, module relationships, and external dependencies
33
- **How**: Analyzed import statements, requirements.txt, and cross-module dependencies
34
- **Why**: Understanding dependencies helps identify potential conflicts and integration issues
35
-
36
- **Key Dependencies:**
37
-
38
- - **Core ML**: PyTorch, scikit-learn, NumPy, SciPy
39
- - **UI Framework**: Streamlit with custom styling
40
- - **Data Processing**: Pandas, matplotlib, seaborn for visualization
41
- - **Spectroscopy**: Custom preprocessing pipeline in `utils/preprocessing.py`
42
-
43
- #### Step 3: UI Integration Assessment
44
-
45
- **What**: Analyzed how UI components integrate with backend logic
46
- **How**: Examined `modules/ui_components.py`, `app.py`, and state management
47
- **Why**: UI-backend integration issues are the source of several reported bugs
48
-
49
- **Architecture Pattern:**
50
-
51
- - **Sidebar Controls**: Model selection, modality selection, input configuration
52
- - **Main Content**: Tabbed interface with distinct workflows
53
- - **State Management**: Streamlit session state with custom callback system
54
- - **Results Display**: Modular rendering with caching for performance
55
-
56
- ### Task 1 Findings
57
-
58
- **Strengths:**
59
-
60
- - Clean modular architecture with separation of concerns
61
- - Comprehensive model registry supporting multiple architectures
62
- - Robust preprocessing pipeline with modality-specific parameters
63
- - Good error handling and caching mechanisms
64
-
65
- **Critical Issues Identified:**
66
-
67
- 1. **Configuration Mismatch**: `config.py` defines only 2 models while `models/registry.py` has 6 models
68
- 2. **UI-Backend Disconnect**: Sidebar uses `MODEL_CONFIG` (2 models) instead of registry (6 models)
69
- 3. **Modality State Inconsistency**: Two separate modality selectors can have different values
70
- 4. **Missing Model Weights**: Model loading expects weight files that may not exist
71
-
72
- ### Task 1 Recommendations
73
-
74
- 1. **Unify Model Configuration**: Replace `config.py` MODEL_CONFIG with registry-based model selection
75
- 2. **Implement Consistent State Management**: Synchronize modality selection across UI components
76
- 3. **Add Model Availability Checks**: Dynamically show only models with available weights
77
- 4. **Improve Error Handling**: Better user feedback for missing dependencies or models
78
-
79
- ### Task 1 Reflection
80
-
81
- The codebase shows good architectural principles but suffers from evolution-related inconsistencies. The split between legacy configuration and new registry system is the root cause of several UI bugs. The modular design makes fixes straightforward once issues are identified.
82
-
83
- ### Transition to Next Task
84
-
85
- The structural analysis reveals that preprocessing is well-architected with modality-specific handling. Next, we'll examine the actual preprocessing implementation to assess effectiveness for Raman vs FTIR data.
86
-
87
- ---
88
-
89
- ## Task 2: Data Preprocessing Evaluation
90
-
91
- ### Overview
92
-
93
- Evaluating the preprocessing pipeline for both Raman and FTIR spectroscopy data to identify modality-specific issues and optimization opportunities.
94
-
95
- ### Steps
96
-
97
- #### Step 1: Preprocessing Pipeline Architecture Analysis
98
-
99
- **What**: Examined the preprocessing pipeline structure and modality handling
100
- **How**: Analyzed `utils/preprocessing.py` and related test files
101
- **Why**: Understanding the preprocessing flow is crucial for identifying performance bottlenecks and modality-specific issues
102
-
103
- **Pipeline Components:**
104
-
105
- 1. **Input Validation**: File format, data points, wavenumber range validation
106
- 2. **Resampling**: Linear interpolation to uniform 500-point grid
107
- 3. **Baseline Correction**: Polynomial detrending (configurable degree)
108
- 4. **Smoothing**: Savitzky-Golay filter for noise reduction
109
- 5. **Normalization**: Min-max scaling with constant-signal protection
110
- 6. **Modality-Specific Processing**: FTIR atmospheric and water vapor corrections
111
-
112
- #### Step 2: Modality-Specific Parameter Assessment
113
-
114
- **What**: Analyzed the different preprocessing parameters for Raman vs FTIR
115
- **How**: Examined `MODALITY_PARAMS` and `MODALITY_RANGES` configurations
116
- **Why**: Different spectroscopy techniques require different preprocessing approaches
117
-
118
- **Raman Parameters:**
119
-
120
- - Range: 200-4000 cm⁻¹ (typical Raman range)
121
- - Baseline degree: 2 (polynomial)
122
- - Smoothing window: 11 points
123
- - Cosmic ray removal: Disabled (potential issue)
124
-
125
- **FTIR Parameters:**
126
-
127
- - Range: 400-4000 cm⁻¹ (FTIR range)
128
- - Baseline degree: 2 (same as Raman)
129
- - Smoothing window: Different from Raman
130
- - Atmospheric correction: Available but optional
131
- - Water vapor correction: Available but optional
132
-
133
- #### Step 3: Validation and Quality Control Analysis
134
-
135
- **What**: Reviewed data quality assessment and validation mechanisms
136
- **How**: Examined `modules/enhanced_data_pipeline.py` quality controller
137
- **Why**: Data quality directly impacts model performance, especially for FTIR
138
-
139
- **Quality Metrics:**
140
-
141
- - Signal-to-noise ratio assessment
142
- - Baseline stability evaluation
143
- - Peak resolution analysis
144
- - Spectral range coverage validation
145
- - Instrumental artifact detection
146
-
147
- ### Task 2 Findings
148
-
149
- **Raman Preprocessing Strengths:**
150
-
151
- - Appropriate wavenumber range for Raman spectroscopy
152
- - Standard polynomial baseline correction effective for most Raman data
153
- - Savitzky-Golay smoothing parameters well-tuned
154
-
155
- **Raman Preprocessing Issues:**
156
-
157
- - **Cosmic Ray Removal Disabled**: Major issue for Raman data quality
158
- - **Fixed Parameters**: No adaptive preprocessing based on signal quality
159
- - **Limited Noise Handling**: Could benefit from more sophisticated denoising
160
-
161
- **FTIR Preprocessing Strengths:**
162
-
163
- - Modality-specific wavenumber range (400-4000 cm⁻¹)
164
- - Atmospheric interference correction available
165
- - Water vapor band correction implemented
166
-
167
- **FTIR Preprocessing Critical Issues:**
168
-
169
- 1. **Atmospheric Corrections Often Disabled**: Default configuration doesn't enable critical FTIR corrections
170
- 2. **Insufficient Baseline Correction**: FTIR often requires more aggressive baseline handling
171
- 3. **Limited CO₂/H₂O Handling**: Basic water vapor correction may be insufficient
172
- 4. **No Beer-Lambert Law Considerations**: FTIR absorbance data needs different normalization
173
-
174
- ### Task 2 Recommendations
175
-
176
- **For Raman Optimization:**
177
-
178
- 1. **Enable Cosmic Ray Removal**: Implement and activate cosmic ray spike detection/removal
179
- 2. **Adaptive Smoothing**: Dynamic smoothing parameters based on noise level
180
- 3. **Advanced Denoising**: Consider wavelet denoising for weak signals
181
-
182
- **For FTIR Enhancement:**
183
-
184
- 1. **Enable Atmospheric Corrections by Default**: Activate CO₂ and H₂O corrections
185
- 2. **Improved Baseline Correction**: Implement rubber-band or airPLS baseline correction
186
- 3. **Absorbance-Specific Normalization**: Use Beer-Lambert law appropriate scaling
187
- 4. **Region-of-Interest Selection**: Focus on chemically relevant wavenumber regions
188
-
189
- ### Task 2 Reflection
190
-
191
- The preprocessing pipeline is well-architected but conservative in its approach. Raman processing is adequate but misses cosmic ray removal - a critical step. FTIR processing has the right components but they're not properly enabled or optimized. The modular design makes improvements straightforward to implement.
192
-
193
- ### Transition to Next Task
194
-
195
- With preprocessing issues identified, we now examine feature extraction methods to understand why FTIR performance is poor compared to Raman and identify optimization opportunities.
196
-
197
- ---
198
-
199
- ## Task 3: Feature Extraction Assessment
200
-
201
- ### Overview
202
-
203
- Analyzing feature extraction methods for both modalities, focusing on why FTIR features are ineffective compared to Raman and identifying optimization strategies.
204
-
205
- ### Steps
206
-
207
- #### Step 1: Current Feature Extraction Analysis
208
-
209
- **What**: Examined how spectral features are extracted and used by ML models
210
- **How**: Analyzed model architectures, preprocessing outputs, and feature representation
211
- **Why**: Feature quality directly impacts model performance and explains modality-specific effectiveness
212
-
213
- **Current Approach:**
214
-
215
- - **Raw Spectral Features**: Direct use of preprocessed intensity values
216
- - **Uniform Sampling**: All spectra resampled to 500 points regardless of modality
217
- - **No Domain-Specific Features**: Missing peak detection, band identification, or chemical markers
218
- - **Generic Architecture**: Same CNN architecture for both Raman and FTIR
219
-
220
- #### Step 2: Raman Feature Effectiveness Analysis
221
-
222
- **What**: Assessed why Raman features work reasonably well
223
- **How**: Examined Raman spectroscopy characteristics and model performance
224
- **Why**: Understanding Raman success can guide FTIR improvements
225
-
226
- **Raman Advantages:**
227
-
228
- - **Sharp Peaks**: Raman provides distinct, narrow peaks suitable for CNN pattern recognition
229
- - **Molecular Vibrations**: Direct correlation between polymer degradation and spectral changes
230
- - **Less Background**: Raman typically has cleaner backgrounds than FTIR
231
- - **Consistent Baseline**: Raman baselines are generally more stable
232
-
233
- #### Step 3: FTIR Feature Ineffectiveness Analysis
234
-
235
- **What**: Investigated specific reasons for poor FTIR performance
236
- **How**: Analyzed FTIR characteristics, preprocessing limitations, and model architecture fit
237
- **Why**: Identifying root causes enables targeted improvements
238
-
239
- **FTIR Challenges:**
240
-
241
- 1. **Broad Absorption Bands**: FTIR features are broader and more overlapping than Raman peaks
242
- 2. **Atmospheric Interference**: CO₂ and H₂O bands mask important polymer signals
243
- 3. **Complex Baselines**: FTIR baselines drift more significantly than Raman
244
- 4. **Beer-Lambert Effects**: Absorbance intensity relates logarithmically to concentration
245
- 5. **Matrix Effects**: Sample preparation artifacts more pronounced in FTIR
246
-
247
- ### Task 3 Findings
248
-
249
- **Why FTIR Features Are Ineffective:**
250
-
251
- 1. **Inappropriate Preprocessing**:
252
-
253
- - Min-max normalization ignores Beer-Lambert law principles
254
- - Disabled atmospheric corrections leave interfering bands
255
- - Insufficient baseline correction for FTIR drift characteristics
256
-
257
- 2. **Suboptimal Feature Representation**:
258
-
259
- - 500-point uniform sampling doesn't emphasize chemically relevant regions
260
- - No derivative spectroscopy (essential for FTIR analysis)
261
- - Missing peak integration or band ratio calculations
262
-
263
- 3. **Architecture Mismatch**:
264
-
265
- - CNN architectures optimized for sharp Raman peaks
266
- - No attention mechanisms for broad FTIR absorption bands
267
- - Insufficient receptive field for FTIR's broader spectral features
268
-
269
- 4. **Missing Domain Knowledge**:
270
- - No chemical group identification (C=O, C-H, O-H bands)
271
- - Missing polymer-specific spectral markers
272
- - No weathering-related spectral indicators
273
-
274
- **Why Raman Works Better:**
275
-
276
- - Sharp peaks match CNN's pattern recognition strengths
277
- - More stable baselines require less aggressive preprocessing
278
- - Direct molecular vibration information
279
- - Less atmospheric interference
280
-
281
- ### Task 3 Recommendations
282
-
283
- **Immediate FTIR Improvements:**
284
-
285
- 1. **Enable FTIR-Specific Preprocessing**: Activate atmospheric corrections, improve baseline handling
286
- 2. **Implement Derivative Spectroscopy**: Add first/second derivatives to enhance peak resolution
287
- 3. **Region-of-Interest Focus**: Weight chemically relevant wavenumber regions more heavily
288
- 4. **Absorbance-Appropriate Normalization**: Use log-scale normalization respecting Beer-Lambert law
289
-
290
- **Advanced Feature Engineering:**
291
-
292
- 1. **Peak Detection and Integration**: Extract meaningful chemical band areas
293
- 2. **Band Ratio Calculations**: Calculate ratios indicative of polymer degradation
294
- 3. **Spectral Deconvolution**: Separate overlapping absorption bands
295
- 4. **Chemical Group Identification**: Automated detection of polymer functional groups
296
-
297
- **Architecture Modifications:**
298
-
299
- 1. **Multi-Scale CNNs**: Different receptive fields for broad vs narrow features
300
- 2. **Attention Mechanisms**: Focus on chemically relevant spectral regions
301
- 3. **Hybrid Models**: Combine CNN backbone with spectroscopy-specific layers
302
- 4. **Ensemble Approaches**: Separate models for different FTIR regions
303
-
304
- ### Task 3 Reflection
305
-
306
- The analysis reveals that FTIR's poor performance stems from treating it identically to Raman despite fundamental differences in spectroscopic principles. FTIR requires domain-specific preprocessing, feature extraction, and potentially different architectures. The current generic approach works for Raman's sharp peaks but fails for FTIR's broad bands.
307
-
308
- ### Transition to Next Task
309
-
310
- With feature extraction issues identified, we now analyze the ML models and training processes, particularly focusing on how the AI Model Selection UI integrates with the various architectures.
311
-
312
- ---
313
-
314
- ## Task 4: ML Models and Training Analysis
315
-
316
- ### Overview
317
-
318
- Evaluating the machine learning models, their architectures, training/validation processes, and integration with the AI Model Selection UI to identify performance and usability issues.
319
-
320
- ### Steps
321
-
322
- #### Step 1: Model Architecture Analysis
323
-
324
- **What**: Examined the available model architectures and their suitability for spectroscopy data
325
- **How**: Analyzed model classes in `models/` directory and registry specifications
326
- **Why**: Understanding model capabilities helps identify performance limitations and UI integration issues
327
-
328
- **Available Models in Registry (6 total):**
329
-
330
- 1. **figure2**: Baseline CNN (500K params, 94.8% accuracy)
331
- 2. **resnet**: ResNet1D with skip connections (100K params, 96.2% accuracy)
332
- 3. **resnet18vision**: Adapted ResNet18 (11M params, 94.5% accuracy)
333
- 4. **enhanced_cnn**: CNN with attention mechanisms (800K params, 97.5% accuracy)
334
- 5. **efficient_cnn**: Lightweight CNN (200K params, 95.5% accuracy)
335
- 6. **hybrid_net**: CNN-Transformer hybrid (1.2M params, 96.8% accuracy)
336
-
337
- **Models in UI Config (2 total):**
338
-
339
- - Only "Figure2CNN (Baseline)" and "ResNet1D (Advanced)" appear in sidebar
340
-
341
- #### Step 2: Training and Validation Process Assessment
342
-
343
- **What**: Analyzed model training methodology and validation approaches
344
- **How**: Examined training scripts, performance metrics, and validation procedures
345
- **Why**: Training quality affects model reliability and explains performance differences
346
-
347
- **Training Observations:**
348
-
349
- - **Ground Truth Validation**: Filename-based labeling system (sta* = stable, wea* = weathered)
350
- - **Performance Tracking**: Comprehensive metrics tracking in `utils/performance_tracker.py`
351
- - **Cross-Validation**: Framework present but validation rigor unclear
352
- - **Hyperparameter Tuning**: Model-specific parameters but limited systematic optimization
353
-
354
- #### Step 3: AI Model Selection UI Integration Analysis
355
-
356
- **What**: Investigated how the UI integrates with the model registry and handles model selection
357
- **How**: Traced code flow from UI components through model loading to inference
358
- **Why**: UI-backend disconnection is causing major usability issues (Bug A)
359
-
360
- **Integration Flow:**
361
-
362
- 1. **Sidebar Selection**: Uses `MODEL_CONFIG` from `config.py` (2 models only)
363
- 2. **Model Loading**: `core_logic.py` expects specific weight file paths
364
- 3. **Registry System**: `models/registry.py` has 6 models but isn't used by UI
365
- 4. **Comparison Tab**: Uses registry correctly, causing inconsistency
366
-
367
- ### Task 4 Findings
368
-
369
- **Model Architecture Strengths:**
370
-
371
- - **Diverse Options**: Good variety from lightweight to transformer-based models
372
- - **Performance Range**: Models span efficiency vs accuracy trade-offs
373
- - **Modality Support**: All models claim Raman/FTIR compatibility
374
- - **Modern Architectures**: Includes attention mechanisms and hybrid approaches
375
-
376
- **Critical Integration Issues:**
377
-
378
- 1. **Bug A Root Cause - Configuration Split**:
379
-
380
- - Sidebar uses legacy `config.py` with only 2 models
381
- - Registry has 6 models but isn't connected to main UI
382
- - Model weights expected in specific paths that may not exist
383
-
384
- 2. **Model Loading Problems**:
385
-
386
- - Weight files may be missing (`model_weights/` or `outputs/` directory)
387
- - Error handling shows warnings but continues with random weights
388
- - No dynamic availability checking
389
-
390
- 3. **Inconsistent Performance Claims**:
391
- - Registry shows 97.5% accuracy for enhanced_cnn
392
- - Unclear if these are validated metrics or theoretical
393
- - No real-time performance validation
394
-
395
- **Training and Validation Issues:**
396
-
397
- 1. **Limited Validation Rigor**: Simple filename-based ground truth may be insufficient
398
- 2. **No Cross-Modal Validation**: Models trained/tested on same modality data
399
- 3. **Missing Baseline Comparisons**: No systematic comparison with traditional methods
400
- 4. **Insufficient Hyperparameter Search**: Limited evidence of systematic optimization
401
-
402
- ### Task 4 Recommendations
403
-
404
- **Immediate UI Integration Fixes:**
405
-
406
- 1. **Connect Registry to Sidebar**: Replace `MODEL_CONFIG` with registry-based selection
407
- 2. **Dynamic Model Availability**: Show only models with available weights
408
- 3. **Unified Model Interface**: Consistent model loading across all UI components
409
- 4. **Better Error Handling**: Clear feedback when models unavailable
410
-
411
- **Model Architecture Improvements:**
412
-
413
- 1. **Modality-Specific Models**: Separate architectures optimized for Raman vs FTIR
414
- 2. **Transfer Learning**: Pre-train on one modality, fine-tune on another
415
- 3. **Multi-Modal Models**: Architectures that can handle both modalities simultaneously
416
- 4. **Uncertainty Quantification**: Add confidence estimates to model outputs
417
-
418
- **Training and Validation Enhancements:**
419
-
420
- 1. **Rigorous Cross-Validation**: Implement proper k-fold validation
421
- 2. **External Validation**: Test on independent datasets
422
- 3. **Hyperparameter Optimization**: Systematic search for optimal parameters
423
- 4. **Baseline Comparisons**: Compare against traditional chemometric methods
424
-
425
- ### Task 4 Reflection
426
-
427
- The model architecture diversity is impressive, but the UI integration is fundamentally broken due to configuration system evolution. The disconnect between registry (6 models) and UI (2 models) creates a poor user experience. Training validation appears adequate but could be more rigorous for scientific applications.
428
-
429
- ### Transition to Next Task
430
-
431
- With model integration issues identified, we now investigate the specific UI bugs that impact user experience and functionality, providing detailed analysis of each reported issue.
432
-
433
- ---
434
-
435
- ## Task 5: UI Bug Investigation
436
-
437
- ### Overview
438
-
439
- Detailed investigation of the four specific UI bugs reported: AI Model Selection limitations, modality validation issues, Model Comparison tab errors, and conflicting modality selectors.
440
-
441
- ### Steps
442
-
443
- #### Step 1: Bug A Analysis - AI Model Selection Limitation
444
-
445
- **What**: Investigated why "Choose AI Model" selectbox shows only 2 models instead of 6
446
- **How**: Traced code flow from UI rendering to model configuration
447
- **Why**: This bug prevents users from accessing 4 out of 6 available models
448
-
449
- **Root Cause Analysis:**
450
-
451
- ```python
452
- # In modules/ui_components.py line 197-199
453
- model_labels = [
454
- f"{MODEL_CONFIG[name]['emoji']} {name}" for name in MODEL_CONFIG.keys()
455
- ]
456
- ```
457
-
458
- **Problem**: UI uses `MODEL_CONFIG` from `config.py` which only defines 2 models:
459
-
460
- - "Figure2CNN (Baseline)"
461
- - "ResNet1D (Advanced)"
462
-
463
- **Missing Models**: 4 models from registry not accessible:
464
-
465
- - enhanced_cnn (97.5% accuracy)
466
- - efficient_cnn (95.5% accuracy)
467
- - hybrid_net (96.8% accuracy)
468
- - resnet18vision (94.5% accuracy)
469
-
470
- #### Step 2: Bug B Analysis - Modality Validation Issues
471
-
472
- **What**: Analyzed why modality selector allows incorrect data processing
473
- **How**: Examined data validation and routing logic between modality selection and preprocessing
474
- **Why**: This causes incorrect spectroscopy analysis and invalid results
475
-
476
- **Issue Identification:**
477
-
478
- - **Modality Selection**: Sidebar allows user to choose Raman or FTIR
479
- - **Data Upload**: User uploads spectrum file (no automatic modality detection)
480
- - **Processing Gap**: No validation that uploaded data matches selected modality
481
- - **Result**: FTIR data processed with Raman parameters or vice versa
482
-
483
- **Validation Missing:**
484
-
485
- - No automatic spectroscopy type detection from data characteristics
486
- - No wavenumber range validation against modality expectations
487
- - No warning when data doesn't match selected modality
488
-
489
- #### Step 3: Bug C Analysis - Model Comparison Tab Errors
490
-
491
- **What**: Investigated specific errors in Model Comparison tab functionality
492
- **How**: Analyzed error messages and async processing logic
493
- **Why**: These errors prevent multi-model comparison functionality
494
-
495
- **Error Analysis:**
496
-
497
- 1. **"Error loading model figure2: 'figure2'"**:
498
-
499
- - Registry uses key "figure2" but UI expects "Figure2CNN (Baseline)"
500
- - Model loading function expects config.py format, not registry format
501
-
502
- 2. **"Error loading model resnet: 'resnet'"**:
503
-
504
- - Same issue - key mismatch between registry and loading function
505
-
506
- 3. **"Error during comparison: min() arg is an empty sequence"**:
507
- - Occurs when no valid model results are available
508
- - Async processing fails and leaves empty results list
509
- - min() function called on empty list causes crash
510
-
511
- **Async Processing Issues:**
512
-
513
- - Models fail to load due to key mismatch
514
- - Error handling doesn't prevent downstream crashes
515
- - UI doesn't gracefully handle all-model-failure scenarios
516
-
517
- #### Step 4: Bug D Analysis - Conflicting Modality Selectors
518
-
519
- **What**: Identified UX issue with two modality selectors having different values
520
- **How**: Examined state management between sidebar and main content areas
521
- **Why**: This creates user confusion and inconsistent application behavior
522
-
523
- **Selector Locations:**
524
-
525
- 1. **Sidebar**: `st.selectbox("Choose Modality", key="modality_select")`
526
- 2. **Comparison Tab**: `st.selectbox("Select Modality", key="comparison_modality")`
527
-
528
- **State Management Issue:**
529
-
530
- ```python
531
- # In comparison tab - line 1001
532
- st.session_state["modality_select"] = modality
533
- ```
534
-
535
- - Comparison tab overwrites sidebar state
536
- - No synchronization mechanism
537
- - Users can have contradictory settings visible simultaneously
538
-
539
- ### Task 5 Findings
540
-
541
- **Bug A - Model Selection (Critical):**
542
-
543
- - **Impact**: 66% of models inaccessible to users
544
- - **Cause**: Legacy configuration system override
545
- - **Severity**: High - Major functionality loss
546
-
547
- **Bug B - Modality Validation (High):**
548
-
549
- - **Impact**: Incorrect analysis results, misleading outputs
550
- - **Cause**: Missing data validation layer
551
- - **Severity**: High - Scientific accuracy compromised
552
-
553
- **Bug C - Comparison Errors (High):**
554
-
555
- - **Impact**: Multi-model comparison completely broken
556
- - **Cause**: Key mismatch between registry and loading systems
557
- - **Severity**: High - Core feature non-functional
558
-
559
- **Bug D - UI Inconsistency (Medium):**
560
-
561
- - **Impact**: User confusion, inconsistent behavior
562
- - **Cause**: Poor state management across components
563
- - **Severity**: Medium - UX degradation
564
-
565
- ### Task 5 Recommendations
566
-
567
- **Bug A - Immediate Fix:**
568
-
569
- ```python
570
- # Replace MODEL_CONFIG usage with registry
571
- from models.registry import choices, get_model_info
572
-
573
- # In render_sidebar():
574
- available_models = choices()
575
- model_labels = [f"{get_model_info(name).get('emoji', '')} {name}"
576
- for name in available_models]
577
- ```
578
-
579
- **Bug B - Data Validation:**
580
-
581
- ```python
582
- def validate_modality_match(x_data, y_data, selected_modality):
583
- """Validate that data characteristics match selected modality"""
584
- wavenumber_range = max(x_data) - min(x_data)
585
-
586
- if selected_modality == "raman" and not (200 <= min(x_data) <= 4000):
587
- return False, "Data appears to be FTIR, not Raman"
588
- elif selected_modality == "ftir" and not (400 <= min(x_data) <= 4000):
589
- return False, "Data appears to be Raman, not FTIR"
590
-
591
- return True, "Modality validated"
592
- ```
593
-
594
- **Bug C - Model Loading Fix:**
595
-
596
- ```python
597
- # Unify model loading to use registry keys consistently
598
- def load_model_from_registry(model_key):
599
- """Load model using registry system"""
600
- from models.registry import build, spec
601
- model = build(model_key, 500)
602
- return model
603
- ```
604
-
605
- **Bug D - State Synchronization:**
606
-
607
- ```python
608
- # Implement centralized modality state
609
- def sync_modality_state():
610
- """Ensure all modality selectors show same value"""
611
- if "comparison_modality" in st.session_state:
612
- st.session_state["modality_select"] = st.session_state["comparison_modality"]
613
- ```
614
-
615
- ### Task 5 Reflection
616
-
617
- All four bugs stem from the evolution of the codebase where new systems (registry) were added without updating dependent components. The fixes are straightforward but require systematic updates across multiple files. The bugs range from critical functionality loss to user experience degradation.
618
-
619
- ### Transition to Next Task
620
-
621
- With all bugs identified and root causes understood, we can now propose comprehensive improvements that address not only the immediate issues but also enhance the overall pipeline performance and usability.
622
-
623
- ---
624
-
625
- ## Task 6: Improvement Proposals
626
-
627
- ### Overview
628
-
629
- Proposing comprehensive improvements for identified issues, prioritizing FTIR feature enhancements, Raman optimization, and UI bug fixes based on the analysis from Tasks 1-5.
630
-
631
- ### Steps
632
-
633
- #### Step 1: Immediate Critical Fixes (High Priority)
634
-
635
- **What**: Address bugs that prevent core functionality
636
- **How**: Systematic fixes for model selection, modality validation, and UI consistency
637
- **Why**: These issues block users from accessing key features and compromise result accuracy
638
-
639
- **Priority 1: Model Selection Fix (Bug A)**
640
-
641
- ```python
642
- # File: modules/ui_components.py
643
- # Replace lines 197-199 with:
644
- from models.registry import choices, get_model_info
645
-
646
- def render_sidebar():
647
- # ... existing code ...
648
-
649
- # Model selection using registry
650
- st.markdown("##### AI Model Selection")
651
- available_models = choices()
652
-
653
- # Check model availability dynamically
654
- available_with_weights = []
655
- for model_key in available_models:
656
- # Check if weights exist
657
- model_info = get_model_info(model_key)
658
- # Add availability check here
659
- available_with_weights.append(model_key)
660
-
661
- model_options = {name: get_model_info(name) for name in available_with_weights}
662
- selected_model = st.selectbox(
663
- "Choose AI Model",
664
- list(model_options.keys()),
665
- key="model_select",
666
- format_func=lambda x: f"{model_options[x].get('description', x)}",
667
- on_change=on_model_change,
668
- )
669
- ```
670
-
671
- **Priority 2: Modality Validation (Bug B)**
672
-
673
- ```python
674
- # File: utils/preprocessing.py
675
- # Add validation function
676
- def validate_spectrum_modality(x_data, y_data, selected_modality):
677
- """Validate spectrum characteristics match selected modality"""
678
- x_min, x_max = min(x_data), max(x_data)
679
-
680
- validation_rules = {
681
- 'raman': {
682
- 'min_wavenumber': 200,
683
- 'max_wavenumber': 4000,
684
- 'typical_peaks': 'sharp',
685
- 'baseline': 'stable'
686
- },
687
- 'ftir': {
688
- 'min_wavenumber': 400,
689
- 'max_wavenumber': 4000,
690
- 'typical_peaks': 'broad',
691
- 'baseline': 'variable'
692
- }
693
- }
694
-
695
- rules = validation_rules[selected_modality]
696
- issues = []
697
-
698
- if x_min < rules['min_wavenumber'] or x_max > rules['max_wavenumber']:
699
- issues.append(f"Wavenumber range {x_min:.0f}-{x_max:.0f} cm⁻¹ unusual for {selected_modality.upper()}")
700
-
701
- return len(issues) == 0, issues
702
- ```
703
-
704
- #### Step 2: FTIR Performance Enhancement (High Priority)
705
-
706
- **What**: Implement FTIR-specific preprocessing and feature extraction improvements
707
- **How**: Enable atmospheric corrections, add derivative spectroscopy, improve normalization
708
- **Why**: FTIR currently underperforms due to inappropriate processing for its spectroscopic characteristics
709
-
710
- **Enhanced FTIR Preprocessing:**
711
-
712
- ```python
713
- # File: utils/preprocessing.py
714
- # Modify MODALITY_PARAMS for FTIR
715
- MODALITY_PARAMS = {
716
- "ftir": {
717
- "baseline_degree": 3, # More aggressive baseline correction
718
- "smooth_window": 15, # Wider smoothing for broad bands
719
- "smooth_polyorder": 3,
720
- "atmospheric_correction": True, # Enable by default
721
- "water_correction": True, # Enable by default
722
- "derivative_order": 1, # Add first derivative
723
- "normalize_method": "vector", # L2 normalization better for FTIR
724
- "region_weighting": True, # Weight important chemical regions
725
- }
726
- }
727
-
728
- def apply_ftir_enhancements(x, y):
729
- """Enhanced FTIR preprocessing pipeline"""
730
- # 1. Remove atmospheric interference
731
- y_clean = remove_atmospheric_interference(y)
732
-
733
- # 2. Advanced baseline correction (airPLS or rubber band)
734
- y_baseline = advanced_baseline_correction(y_clean, method='airPLS')
735
-
736
- # 3. First derivative for peak enhancement
737
- y_deriv = np.gradient(y_baseline)
738
-
739
- # 4. Region-of-interest weighting
740
- y_weighted = apply_chemical_region_weighting(x, y_deriv)
741
-
742
- # 5. Vector normalization
743
- y_normalized = y_weighted / np.linalg.norm(y_weighted)
744
-
745
- return y_normalized
746
- ```
747
-
748
- **FTIR-Specific Model Architecture:**
749
-
750
- ```python
751
- # File: models/ftir_cnn.py
752
- class FTIRSpecificCNN(nn.Module):
753
- """CNN architecture optimized for FTIR characteristics"""
754
-
755
- def __init__(self, input_length=500):
756
- super().__init__()
757
-
758
- # Multi-scale convolutions for broad absorption bands
759
- self.multi_scale_conv = nn.ModuleList([
760
- nn.Conv1d(1, 32, kernel_size=3, padding=1), # Fine features
761
- nn.Conv1d(1, 32, kernel_size=7, padding=3), # Medium features
762
- nn.Conv1d(1, 32, kernel_size=15, padding=7), # Broad features
763
- ])
764
-
765
- # Attention mechanism for chemical region focus
766
- self.attention = nn.MultiheadAttention(96, 8)
767
-
768
- # Chemical group detection layers
769
- self.chemical_layers = nn.Sequential(
770
- nn.Conv1d(96, 64, kernel_size=5, padding=2),
771
- nn.BatchNorm1d(64),
772
- nn.ReLU(),
773
- nn.Dropout(0.3)
774
- )
775
-
776
- # Classification head
777
- self.classifier = nn.Sequential(
778
- nn.AdaptiveAvgPool1d(1),
779
- nn.Flatten(),
780
- nn.Linear(64, 32),
781
- nn.ReLU(),
782
- nn.Dropout(0.5),
783
- nn.Linear(32, 2)
784
- )
785
-
786
- def forward(self, x):
787
- # Multi-scale feature extraction
788
- scale_features = []
789
- for conv in self.multi_scale_conv:
790
- scale_features.append(conv(x))
791
-
792
- # Concatenate multi-scale features
793
- features = torch.cat(scale_features, dim=1)
794
-
795
- # Apply attention
796
- features = features.permute(2, 0, 1) # seq_len, batch, features
797
- attended, _ = self.attention(features, features, features)
798
- attended = attended.permute(1, 2, 0) # batch, features, seq_len
799
-
800
- # Chemical group detection
801
- chemical_features = self.chemical_layers(attended)
802
-
803
- # Classification
804
- output = self.classifier(chemical_features)
805
- return output
806
- ```
807
-
808
- #### Step 3: Raman Optimization (Medium Priority)
809
-
810
- **What**: Enhance Raman preprocessing and add advanced denoising capabilities
811
- **How**: Enable cosmic ray removal, adaptive smoothing, and weak signal enhancement
812
- **Why**: Raman works adequately but has room for optimization, especially for weak signals
813
-
814
- **Raman Enhancements:**
815
-
816
- ```python
817
- # File: utils/raman_enhancement.py
818
- def enhanced_raman_preprocessing(x, y):
819
- """Enhanced Raman preprocessing with cosmic ray removal and adaptive denoising"""
820
-
821
- # 1. Cosmic ray removal
822
- y_clean = remove_cosmic_rays(y, threshold=3.0)
823
-
824
- # 2. Adaptive smoothing based on signal-to-noise ratio
825
- snr = calculate_snr(y_clean)
826
- if snr < 10:
827
- # Strong smoothing for noisy data
828
- y_smooth = savgol_filter(y_clean, window_length=15, polyorder=2)
829
- else:
830
- # Light smoothing for clean data
831
- y_smooth = savgol_filter(y_clean, window_length=7, polyorder=2)
832
-
833
- # 3. Baseline correction optimized for Raman
834
- y_baseline = polynomial_baseline_correction(y_smooth, degree=2)
835
-
836
- # 4. Peak enhancement for weak signals
837
- if snr < 5:
838
- y_enhanced = enhance_weak_peaks(y_baseline)
839
- else:
840
- y_enhanced = y_baseline
841
-
842
- return y_enhanced
843
-
844
- def remove_cosmic_rays(spectrum, threshold=3.0):
845
- """Remove cosmic ray spikes from Raman spectrum"""
846
- # Implementation of cosmic ray detection and removal
847
- # Using derivative-based spike detection
848
- pass
849
- ```
850
-
851
- #### Step 4: UI/UX Improvements (Medium Priority)
852
-
853
- **What**: Fix remaining UI bugs and enhance user experience
854
- **How**: Implement state synchronization, better error handling, and improved feedback
855
- **Why**: Good UX is essential for user adoption and prevents analysis errors
856
-
857
- **State Synchronization Fix:**
858
-
859
- ```python
860
- # File: modules/ui_components.py
861
- def synchronize_modality_state():
862
- """Ensure consistent modality selection across all UI components"""
863
- # Check if any modality selector changed
864
- sidebar_modality = st.session_state.get("modality_select", "raman")
865
- comparison_modality = st.session_state.get("comparison_modality", "raman")
866
-
867
- # Sync states
868
- if sidebar_modality != comparison_modality:
869
- # Use most recent change
870
- if "comparison_modality" in st.session_state:
871
- st.session_state["modality_select"] = comparison_modality
872
- else:
873
- st.session_state["comparison_modality"] = sidebar_modality
874
-
875
- # Call this function at the start of each page render
876
- ```
877
-
878
- **Enhanced Error Handling:**
879
-
880
- ```python
881
- # File: core_logic.py
882
- def load_model_with_validation(model_name):
883
- """Load model with comprehensive validation and user feedback"""
884
- try:
885
- from models.registry import build, spec, get_model_info
886
-
887
- # Check if model exists in registry
888
- if model_name not in choices():
889
- st.error(f"❌ Model '{model_name}' not found in registry")
890
- return None, False
891
-
892
- # Get model info
893
- model_info = get_model_info(model_name)
894
-
895
- # Build model
896
- model = build(model_name, 500)
897
-
898
- # Check for weights
899
- weight_path = f"model_weights/{model_name}_model.pth"
900
- if os.path.exists(weight_path):
901
- state_dict = torch.load(weight_path, map_location="cpu")
902
- model.load_state_dict(state_dict)
903
- st.success(f"✅ Model '{model_name}' loaded successfully")
904
- return model, True
905
- else:
906
- st.warning(f"⚠️ Weights not found for '{model_name}'. Using random initialization.")
907
- return model, False
908
-
909
- except Exception as e:
910
- st.error(f"❌ Error loading model '{model_name}': {str(e)}")
911
- return None, False
912
- ```
913
-
914
- #### Step 5: Advanced Improvements (Lower Priority)
915
-
916
- **What**: Implement advanced features for enhanced analysis capabilities
917
- **How**: Add ensemble methods, uncertainty quantification, and automated quality assessment
918
- **Why**: These improvements enhance the scientific rigor and usability of the platform
919
-
920
- **Ensemble Modeling:**
921
-
922
- ```python
923
- # File: models/ensemble.py
924
- class SpectroscopyEnsemble:
925
- """Ensemble of models for robust predictions"""
926
-
927
- def __init__(self, model_names, modality):
928
- self.models = {}
929
- self.modality = modality
930
-
931
- for name in model_names:
932
- if is_model_compatible(name, modality):
933
- self.models[name] = build(name, 500)
934
-
935
- def predict_with_uncertainty(self, x):
936
- """Predict with uncertainty quantification"""
937
- predictions = []
938
- confidences = []
939
-
940
- for name, model in self.models.items():
941
- pred, conf = model.predict_with_confidence(x)
942
- predictions.append(pred)
943
- confidences.append(conf)
944
-
945
- # Ensemble prediction
946
- ensemble_pred = np.mean(predictions, axis=0)
947
- ensemble_std = np.std(predictions, axis=0)
948
-
949
- return ensemble_pred, ensemble_std
950
- ```
951
-
952
- ### Task 6 Recommendations Summary
953
-
954
- **Immediate Actions (Week 1):**
955
-
956
- 1. Fix model selection bug by connecting UI to registry
957
- 2. Implement modality validation for uploaded data
958
- 3. Resolve model comparison tab errors
959
- 4. Synchronize modality selectors across UI
960
-
961
- **FTIR Enhancement (Week 2-3):**
962
-
963
- 1. Enable atmospheric and water corrections by default
964
- 2. Implement FTIR-specific preprocessing pipeline
965
- 3. Add derivative spectroscopy capabilities
966
- 4. Create FTIR-optimized model architecture
967
-
968
- **Raman Optimization (Week 3-4):**
969
-
970
- 1. Implement cosmic ray removal
971
- 2. Add adaptive preprocessing based on signal quality
972
- 3. Enhance weak signal detection capabilities
973
- 4. Optimize baseline correction parameters
974
-
975
- **Advanced Features (Month 2):**
976
-
977
- 1. Implement ensemble modeling with uncertainty quantification
978
- 2. Add automated data quality assessment
979
- 3. Create modality-specific model architectures
980
- 4. Develop comprehensive validation framework
981
-
982
- ### Task 6 Reflection
983
-
984
- The proposed improvements address immediate functionality issues while building toward a more robust, scientifically rigorous platform. The modular architecture makes these improvements feasible to implement incrementally. Priority is given to fixes that restore core functionality, followed by scientific accuracy improvements, and finally advanced features for enhanced usability.
985
-
986
- ### Final Recommendations
987
-
988
- The ML pipeline shows strong architectural foundations but suffers from evolution-related inconsistencies and inadequate domain-specific optimization. The proposed improvements will restore full functionality, significantly enhance FTIR performance, optimize Raman processing, and improve user experience. Implementation should proceed in priority order to quickly restore core functionality while building toward advanced capabilities.
989
-
990
- ---
991
-
992
- ## Overall Conclusions
993
-
994
- ### Critical Issues Summary
995
-
996
- 1. **UI-Backend Disconnect**: Model registry not connected to UI (Bug A)
997
- 2. **FTIR Processing Inadequacy**: Generic preprocessing fails for FTIR characteristics
998
- 3. **Missing Data Validation**: No modality-data matching verification (Bug B)
999
- 4. **Inconsistent State Management**: Multiple modality selectors conflict (Bug D)
1000
- 5. **Broken Comparison Feature**: Model loading failures prevent comparisons (Bug C)
1001
-
1002
- ### Success Factors
1003
-
1004
- 1. **Strong Architecture**: Modular design supports improvements
1005
- 2. **Comprehensive Model Registry**: Good variety of architectures available
1006
- 3. **Solid Preprocessing Foundation**: Framework exists, needs optimization
1007
- 4. **Quality Tracking**: Performance monitoring infrastructure in place
1008
-
1009
- ### Implementation Priority
1010
-
1011
- 1. **Immediate**: Fix UI bugs to restore functionality
1012
- 2. **High**: Enhance FTIR processing for scientific accuracy
1013
- 3. **Medium**: Optimize Raman processing and improve UX
1014
- 4. **Future**: Add advanced features and ensemble methods
1015
-
1016
- The analysis reveals a platform with excellent potential held back by integration issues and inadequate domain-specific optimization. The proposed improvements will transform it into a robust, scientifically rigorous tool for polymer degradation analysis.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
__pycache__.py ADDED
File without changes
pages/Collaborative_Research.py DELETED
@@ -1,700 +0,0 @@
1
- """
2
- Collaborative Research Interface for POLYMEROS
3
- Community-driven research and validation tools
4
- """
5
-
6
- import streamlit as st
7
- import json
8
- import numpy as np
9
- import matplotlib.pyplot as plt
10
- from datetime import datetime, timedelta
11
- from typing import Dict, List, Any
12
- import uuid
13
-
14
- # Import POLYMEROS components
15
- import sys
16
- import os
17
-
18
- sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
19
-
20
- from modules.enhanced_data import KnowledgeGraph, ContextualSpectrum
21
-
22
-
23
- def init_collaborative_session():
24
- """Initialize collaborative research session"""
25
- if "research_projects" not in st.session_state:
26
- st.session_state.research_projects = load_demo_projects()
27
-
28
- if "community_hypotheses" not in st.session_state:
29
- st.session_state.community_hypotheses = load_demo_hypotheses()
30
-
31
- if "user_profile" not in st.session_state:
32
- st.session_state.user_profile = {
33
- "user_id": "demo_researcher",
34
- "name": "Demo Researcher",
35
- "expertise_areas": ["polymer_chemistry", "spectroscopy"],
36
- "reputation_score": 85,
37
- "contributions": 12,
38
- }
39
-
40
-
41
- def load_demo_projects():
42
- """Load demonstration research projects"""
43
- return [
44
- {
45
- "id": "proj_001",
46
- "title": "Microplastic Degradation Pathways",
47
- "description": "Investigating spectroscopic signatures of microplastic degradation in marine environments",
48
- "lead_researcher": "Dr. Sarah Chen",
49
- "institution": "Ocean Research Institute",
50
- "collaborators": ["University of Tokyo", "MIT Marine Lab"],
51
- "status": "active",
52
- "created_date": "2024-01-15",
53
- "datasets": 3,
54
- "participants": 8,
55
- "recent_activity": "New FTIR dataset uploaded",
56
- "tags": ["microplastics", "marine_degradation", "FTIR"],
57
- },
58
- {
59
- "id": "proj_002",
60
- "title": "Biodegradable Polymer Performance",
61
- "description": "Comparative study of biodegradable polymer aging under different environmental conditions",
62
- "lead_researcher": "Prof. Michael Rodriguez",
63
- "institution": "Sustainable Materials Lab",
64
- "collaborators": ["Stanford University", "Green Chemistry Institute"],
65
- "status": "recruiting",
66
- "created_date": "2024-02-20",
67
- "datasets": 1,
68
- "participants": 3,
69
- "recent_activity": "Seeking Raman spectroscopy expertise",
70
- "tags": ["biodegradable", "sustainability", "aging"],
71
- },
72
- {
73
- "id": "proj_003",
74
- "title": "AI-Assisted Polymer Discovery",
75
- "description": "Developing machine learning models for predicting polymer properties from spectroscopic data",
76
- "lead_researcher": "Dr. Aisha Patel",
77
- "institution": "AI Materials Research Center",
78
- "collaborators": ["DeepMind", "Google Research"],
79
- "status": "published",
80
- "created_date": "2023-11-10",
81
- "datasets": 15,
82
- "participants": 25,
83
- "recent_activity": "Results published in Nature Materials",
84
- "tags": ["machine_learning", "property_prediction", "discovery"],
85
- },
86
- ]
87
-
88
-
89
- def load_demo_hypotheses():
90
- """Load demonstration community hypotheses"""
91
- return [
92
- {
93
- "id": "hyp_001",
94
- "statement": "Carbonyl peak intensity at 1715 cm⁻¹ correlates linearly with UV exposure time in PE samples",
95
- "proposer": "Dr. Sarah Chen",
96
- "institution": "Ocean Research Institute",
97
- "created_date": "2024-03-01",
98
- "supporting_evidence": [
99
- "Time-series FTIR data from 50 PE samples",
100
- "Controlled UV chamber experiments",
101
- "Statistical correlation analysis (R² = 0.89)",
102
- ],
103
- "validation_status": "under_review",
104
- "peer_scores": [4.2, 3.8, 4.5, 4.0],
105
- "experimental_confirmations": 2,
106
- "tags": ["PE", "UV_degradation", "carbonyl"],
107
- "discussion_points": 8,
108
- },
109
- {
110
- "id": "hyp_002",
111
- "statement": "Machine learning models show systematic bias against weathered polymers with low crystallinity",
112
- "proposer": "Prof. Michael Rodriguez",
113
- "institution": "Sustainable Materials Lab",
114
- "created_date": "2024-02-15",
115
- "supporting_evidence": [
116
- "Model performance analysis across 1000+ samples",
117
- "Crystallinity correlation studies",
118
- "Bias detection algorithm results",
119
- ],
120
- "validation_status": "confirmed",
121
- "peer_scores": [4.8, 4.5, 4.7, 4.9],
122
- "experimental_confirmations": 5,
123
- "tags": ["machine_learning", "bias", "crystallinity"],
124
- "discussion_points": 15,
125
- },
126
- ]
127
-
128
-
129
- def render_research_projects():
130
- """Render collaborative research projects interface"""
131
- st.header("🔬 Collaborative Research Projects")
132
-
133
- # Project filters
134
- col1, col2, col3 = st.columns(3)
135
- with col1:
136
- status_filter = st.selectbox(
137
- "Status:", ["all", "active", "recruiting", "published"]
138
- )
139
- with col2:
140
- tag_filter = st.selectbox(
141
- "Domain:", ["all", "microplastics", "biodegradable", "machine_learning"]
142
- )
143
- with col3:
144
- sort_by = st.selectbox("Sort by:", ["recent", "participants", "datasets"])
145
-
146
- # Filter and sort projects
147
- projects = st.session_state.research_projects
148
-
149
- if status_filter != "all":
150
- projects = [p for p in projects if p["status"] == status_filter]
151
-
152
- if tag_filter != "all":
153
- projects = [p for p in projects if tag_filter in p["tags"]]
154
-
155
- # Display projects
156
- for project in projects:
157
- with st.expander(f"📋 {project['title']} ({project['status'].title()})"):
158
- col1, col2 = st.columns([2, 1])
159
-
160
- with col1:
161
- st.write(f"**Description:** {project['description']}")
162
- st.write(
163
- f"**Lead Researcher:** {project['lead_researcher']} ({project['institution']})"
164
- )
165
- st.write(f"**Collaborators:** {', '.join(project['collaborators'])}")
166
- st.write(f"**Tags:** {', '.join(project['tags'])}")
167
-
168
- with col2:
169
- st.metric("Participants", project["participants"])
170
- st.metric("Datasets", project["datasets"])
171
- st.write(f"**Created:** {project['created_date']}")
172
- st.write(f"**Recent:** {project['recent_activity']}")
173
-
174
- # Action buttons
175
- button_col1, button_col2, button_col3 = st.columns(3)
176
- with button_col1:
177
- if st.button(f"Join Project", key=f"join_{project['id']}"):
178
- st.success("Interest registered! Project lead will be notified.")
179
-
180
- with button_col2:
181
- if st.button(f"View Details", key=f"view_{project['id']}"):
182
- render_project_details(project)
183
-
184
- with button_col3:
185
- if st.button(f"Contact Lead", key=f"contact_{project['id']}"):
186
- st.info("Contact request sent to project lead.")
187
-
188
- # Create new project
189
- st.subheader("➕ Start New Project")
190
- with st.expander("Create Research Project"):
191
- project_title = st.text_input("Project Title:")
192
- project_description = st.text_area("Project Description:")
193
- research_areas = st.multiselect(
194
- "Research Areas:",
195
- [
196
- "polymer_chemistry",
197
- "spectroscopy",
198
- "machine_learning",
199
- "sustainability",
200
- "degradation",
201
- ],
202
- )
203
-
204
- if st.button("Create Project"):
205
- if project_title and project_description:
206
- new_project = {
207
- "id": f"proj_{len(st.session_state.research_projects) + 1:03d}",
208
- "title": project_title,
209
- "description": project_description,
210
- "lead_researcher": st.session_state.user_profile["name"],
211
- "institution": "User Institution",
212
- "collaborators": [],
213
- "status": "recruiting",
214
- "created_date": datetime.now().strftime("%Y-%m-%d"),
215
- "datasets": 0,
216
- "participants": 1,
217
- "recent_activity": "Project created",
218
- "tags": research_areas,
219
- }
220
- st.session_state.research_projects.append(new_project)
221
- st.success("Project created successfully!")
222
- else:
223
- st.error("Please fill in required fields.")
224
-
225
-
226
- def render_project_details(project):
227
- """Render detailed project view"""
228
- st.subheader(f"Project Details: {project['title']}")
229
-
230
- # Project overview
231
- col1, col2 = st.columns(2)
232
- with col1:
233
- st.write(f"**Status:** {project['status'].title()}")
234
- st.write(f"**Lead:** {project['lead_researcher']}")
235
- st.write(f"**Institution:** {project['institution']}")
236
-
237
- with col2:
238
- st.write(f"**Created:** {project['created_date']}")
239
- st.write(f"**Participants:** {project['participants']}")
240
- st.write(f"**Datasets:** {project['datasets']}")
241
-
242
- # Tabs for different project aspects
243
- tab1, tab2, tab3, tab4 = st.tabs(
244
- ["Overview", "Datasets", "Collaborators", "Timeline"]
245
- )
246
-
247
- with tab1:
248
- st.write(project["description"])
249
- st.write(f"**Research Areas:** {', '.join(project['tags'])}")
250
-
251
- with tab2:
252
- st.write("**Available Datasets:**")
253
- # Mock dataset information
254
- datasets = [
255
- {
256
- "name": "PE_UV_exposure_series",
257
- "type": "FTIR",
258
- "samples": 150,
259
- "uploaded": "2024-03-01",
260
- },
261
- {
262
- "name": "Weathered_samples_marine",
263
- "type": "Raman",
264
- "samples": 75,
265
- "uploaded": "2024-02-15",
266
- },
267
- {
268
- "name": "Control_samples_lab",
269
- "type": "FTIR",
270
- "samples": 50,
271
- "uploaded": "2024-01-20",
272
- },
273
- ]
274
-
275
- for dataset in datasets:
276
- with st.expander(f"📊 {dataset['name']}"):
277
- st.write(f"**Type:** {dataset['type']}")
278
- st.write(f"**Samples:** {dataset['samples']}")
279
- st.write(f"**Uploaded:** {dataset['uploaded']}")
280
- if st.button(f"Access Dataset", key=f"access_{dataset['name']}"):
281
- st.info("Dataset access request submitted.")
282
-
283
- with tab3:
284
- st.write("**Project Collaborators:**")
285
- for collab in project["collaborators"]:
286
- st.write(f"• {collab}")
287
-
288
- st.write("**Recent Contributors:**")
289
- contributors = [
290
- {
291
- "name": "Dr. Sarah Chen",
292
- "contribution": "FTIR dataset",
293
- "date": "2024-03-01",
294
- },
295
- {
296
- "name": "Alex Johnson",
297
- "contribution": "Data analysis scripts",
298
- "date": "2024-02-28",
299
- },
300
- {
301
- "name": "Prof. Lisa Wang",
302
- "contribution": "Methodology review",
303
- "date": "2024-02-25",
304
- },
305
- ]
306
-
307
- for contrib in contributors:
308
- st.write(
309
- f"• **{contrib['name']}:** {contrib['contribution']} ({contrib['date']})"
310
- )
311
-
312
- with tab4:
313
- st.write("**Project Timeline:**")
314
- timeline_events = [
315
- {
316
- "date": "2024-03-01",
317
- "event": "New FTIR dataset uploaded",
318
- "type": "data",
319
- },
320
- {
321
- "date": "2024-02-25",
322
- "event": "Methodology peer review completed",
323
- "type": "review",
324
- },
325
- {
326
- "date": "2024-02-15",
327
- "event": "Two new collaborators joined",
328
- "type": "team",
329
- },
330
- {
331
- "date": "2024-01-20",
332
- "event": "Initial dataset published",
333
- "type": "data",
334
- },
335
- {"date": "2024-01-15", "event": "Project initiated", "type": "milestone"},
336
- ]
337
-
338
- for event in timeline_events:
339
- event_icon = {"data": "📊", "review": "🔍", "team": "👥", "milestone": "🎯"}
340
- st.write(
341
- f"{event_icon.get(event['type'], '📅')} **{event['date']}:** {event['event']}"
342
- )
343
-
344
-
345
- def render_community_hypotheses():
346
- """Render community hypothesis validation interface"""
347
- st.header("🧪 Community Hypotheses")
348
-
349
- # Hypothesis filters
350
- col1, col2 = st.columns(2)
351
- with col1:
352
- status_filter = st.selectbox(
353
- "Validation Status:", ["all", "under_review", "confirmed", "rejected"]
354
- )
355
- with col2:
356
- st.selectbox(
357
- "Research Domain:",
358
- ["all", "degradation", "machine_learning", "characterization"],
359
- )
360
-
361
- # Display hypotheses
362
- hypotheses = st.session_state.community_hypotheses
363
-
364
- for hypothesis in hypotheses:
365
- # Calculate average peer score
366
- avg_score = np.mean(hypothesis["peer_scores"])
367
-
368
- with st.expander(
369
- f"🧬 {hypothesis['statement'][:80]}... (Score: {avg_score:.1f}/5)"
370
- ):
371
- col1, col2 = st.columns([2, 1])
372
-
373
- with col1:
374
- st.write(f"**Full Statement:** {hypothesis['statement']}")
375
- st.write(
376
- f"**Proposer:** {hypothesis['proposer']} ({hypothesis['institution']})"
377
- )
378
- st.write(f"**Status:** {hypothesis['validation_status'].title()}")
379
-
380
- st.write("**Supporting Evidence:**")
381
- for evidence in hypothesis["supporting_evidence"]:
382
- st.write(f"• {evidence}")
383
-
384
- with col2:
385
- st.metric("Peer Score", f"{avg_score:.1f}/5")
386
- st.metric("Confirmations", hypothesis["experimental_confirmations"])
387
- st.metric("Discussions", hypothesis["discussion_points"])
388
- st.write(f"**Proposed:** {hypothesis['created_date']}")
389
-
390
- # Peer review section
391
- st.subheader("Peer Review")
392
-
393
- review_col1, review_col2 = st.columns(2)
394
- with review_col1:
395
- user_score = st.slider(
396
- "Your Score:", 1, 5, 3, key=f"score_{hypothesis['id']}"
397
- )
398
-
399
- with review_col2:
400
- if st.button("Submit Review", key=f"review_{hypothesis['id']}"):
401
- hypothesis["peer_scores"].append(user_score)
402
- st.success("Review submitted!")
403
-
404
- # Comments and discussion
405
- st.subheader("Community Discussion")
406
-
407
- # Mock discussion
408
- discussions = [
409
- {
410
- "author": "Dr. Sarah Chen",
411
- "comment": "Interesting correlation! Would like to see this tested with PP samples.",
412
- "date": "2024-03-02",
413
- },
414
- {
415
- "author": "Prof. Wang",
416
- "comment": "The R² value is impressive. Have you controlled for temperature effects?",
417
- "date": "2024-03-01",
418
- },
419
- {
420
- "author": "Alex Johnson",
421
- "comment": "We're seeing similar patterns in our lab. Happy to collaborate on validation.",
422
- "date": "2024-02-28",
423
- },
424
- ]
425
-
426
- for discussion in discussions:
427
- st.write(
428
- f"**{discussion['author']}** ({discussion['date']}): {discussion['comment']}"
429
- )
430
-
431
- # Add comment
432
- new_comment = st.text_area(
433
- "Add your comment:", key=f"comment_{hypothesis['id']}"
434
- )
435
- if st.button("Post Comment", key=f"post_{hypothesis['id']}"):
436
- if new_comment:
437
- st.success("Comment posted!")
438
- else:
439
- st.error("Please enter a comment.")
440
-
441
- # Submit new hypothesis
442
- st.subheader("➕ Propose New Hypothesis")
443
- with st.expander("Submit Hypothesis"):
444
- hyp_statement = st.text_area("Hypothesis Statement:")
445
- hyp_evidence = st.text_area("Supporting Evidence (one per line):")
446
- hyp_tags = st.multiselect(
447
- "Research Tags:",
448
- [
449
- "degradation",
450
- "machine_learning",
451
- "spectroscopy",
452
- "characterization",
453
- "prediction",
454
- ],
455
- )
456
-
457
- if st.button("Submit Hypothesis"):
458
- if hyp_statement and hyp_evidence:
459
- evidence_list = [
460
- e.strip() for e in hyp_evidence.split("\n") if e.strip()
461
- ]
462
- new_hypothesis = {
463
- "id": f"hyp_{len(st.session_state.community_hypotheses) + 1:03d}",
464
- "statement": hyp_statement,
465
- "proposer": st.session_state.user_profile["name"],
466
- "institution": "User Institution",
467
- "created_date": datetime.now().strftime("%Y-%m-%d"),
468
- "supporting_evidence": evidence_list,
469
- "validation_status": "under_review",
470
- "peer_scores": [],
471
- "experimental_confirmations": 0,
472
- "tags": hyp_tags,
473
- "discussion_points": 0,
474
- }
475
- st.session_state.community_hypotheses.append(new_hypothesis)
476
- st.success("Hypothesis submitted for peer review!")
477
- else:
478
- st.error("Please provide hypothesis statement and evidence.")
479
-
480
-
481
- def render_peer_review_system():
482
- """Render peer review and reputation system"""
483
- st.header("👥 Peer Review System")
484
-
485
- user_profile = st.session_state.user_profile
486
-
487
- # User reputation dashboard
488
- st.subheader("Your Research Profile")
489
-
490
- col1, col2, col3, col4 = st.columns(4)
491
- with col1:
492
- st.metric("Reputation Score", user_profile["reputation_score"])
493
- with col2:
494
- st.metric("Contributions", user_profile["contributions"])
495
- with col3:
496
- st.metric("Expertise Areas", len(user_profile["expertise_areas"]))
497
- with col4:
498
- st.metric("Active Reviews", 3) # Mock data
499
-
500
- # Expertise areas
501
- st.subheader("Research Expertise")
502
- current_expertise = user_profile["expertise_areas"]
503
- all_expertise = [
504
- "polymer_chemistry",
505
- "spectroscopy",
506
- "machine_learning",
507
- "materials_science",
508
- "degradation_mechanisms",
509
- "sustainability",
510
- ]
511
-
512
- new_expertise = st.multiselect(
513
- "Update your expertise areas:", all_expertise, default=current_expertise
514
- )
515
-
516
- if new_expertise != current_expertise:
517
- user_profile["expertise_areas"] = new_expertise
518
- st.success("Expertise areas updated!")
519
-
520
- # Pending reviews
521
- st.subheader("Pending Reviews")
522
-
523
- pending_reviews = [
524
- {
525
- "type": "hypothesis",
526
- "title": "Spectral band shifts indicate polymer chain scission",
527
- "author": "Dr. James Smith",
528
- "deadline": "2024-03-10",
529
- "complexity": "medium",
530
- },
531
- {
532
- "type": "dataset",
533
- "title": "UV-degraded PP sample collection",
534
- "author": "Prof. Lisa Wang",
535
- "deadline": "2024-03-15",
536
- "complexity": "low",
537
- },
538
- ]
539
-
540
- for review in pending_reviews:
541
- with st.expander(f"📋 {review['title']} (Due: {review['deadline']})"):
542
- st.write(f"**Type:** {review['type'].title()}")
543
- st.write(f"**Author:** {review['author']}")
544
- st.write(f"**Complexity:** {review['complexity'].title()}")
545
- st.write(f"**Deadline:** {review['deadline']}")
546
-
547
- if st.button("Start Review", key=f"start_{review['title'][:20]}"):
548
- st.info("Review interface would open here.")
549
-
550
- # Review quality metrics
551
- st.subheader("Review Quality Metrics")
552
-
553
- metrics = {
554
- "Average Review Time": "2.3 days",
555
- "Review Accuracy": "94%",
556
- "Helpfulness Score": "4.7/5",
557
- "Reviews Completed": "28",
558
- }
559
-
560
- metric_cols = st.columns(len(metrics))
561
- for i, (metric, value) in enumerate(metrics.items()):
562
- with metric_cols[i]:
563
- st.metric(metric, value)
564
-
565
-
566
- def render_knowledge_sharing():
567
- """Render knowledge sharing and collaboration tools"""
568
- st.header("📚 Knowledge Sharing Hub")
569
-
570
- # Recent contributions
571
- st.subheader("Recent Community Contributions")
572
-
573
- contributions = [
574
- {
575
- "type": "dataset",
576
- "title": "Marine microplastic spectral library",
577
- "contributor": "Dr. Sarah Chen",
578
- "date": "2024-03-05",
579
- "downloads": 47,
580
- "rating": 4.8,
581
- },
582
- {
583
- "type": "analysis_script",
584
- "title": "Automated peak identification algorithm",
585
- "contributor": "Alex Johnson",
586
- "date": "2024-03-03",
587
- "downloads": 23,
588
- "rating": 4.6,
589
- },
590
- {
591
- "type": "methodology",
592
- "title": "Best practices for sample preparation",
593
- "contributor": "Prof. Michael Rodriguez",
594
- "date": "2024-03-01",
595
- "downloads": 156,
596
- "rating": 4.9,
597
- },
598
- ]
599
-
600
- for contrib in contributions:
601
- with st.expander(f"📊 {contrib['title']} by {contrib['contributor']}"):
602
- col1, col2 = st.columns([2, 1])
603
-
604
- with col1:
605
- st.write(f"**Type:** {contrib['type'].replace('_', ' ').title()}")
606
- st.write(f"**Contributor:** {contrib['contributor']}")
607
- st.write(f"**Date:** {contrib['date']}")
608
-
609
- with col2:
610
- st.metric("Downloads", contrib["downloads"])
611
- st.metric("Rating", f"{contrib['rating']}/5")
612
-
613
- if st.button("Access Resource", key=f"access_{contrib['title'][:20]}"):
614
- st.success("Resource access granted!")
615
-
616
- # Upload new resource
617
- st.subheader("➕ Share Knowledge Resource")
618
-
619
- with st.expander("Upload Resource"):
620
- resource_type = st.selectbox(
621
- "Resource Type:", ["dataset", "analysis_script", "methodology"]
622
- )
623
- resource_title = st.text_input("Resource Title:")
624
- resource_description = st.text_area("Description:")
625
- resource_tags = st.multiselect(
626
- "Tags:",
627
- [
628
- "spectroscopy",
629
- "polymer_aging",
630
- "machine_learning",
631
- "data_analysis",
632
- "methodology",
633
- ],
634
- )
635
- uploaded_file = st.file_uploader("Upload File:")
636
-
637
- if st.button("Share Resource"):
638
- if (
639
- resource_title
640
- and resource_description
641
- and resource_tags
642
- and uploaded_file
643
- ):
644
- st.success(
645
- f"Resource of type '{resource_type}' uploaded and shared with the community!"
646
- )
647
- else:
648
- st.error("Please fill in all required fields.")
649
-
650
-
651
- def main():
652
- """Main collaborative research interface"""
653
- st.set_page_config(
654
- page_title="POLYMEROS Collaborative Research", page_icon="👥", layout="wide"
655
- )
656
-
657
- st.title("👥 POLYMEROS Collaborative Research")
658
- st.markdown("**Community-Driven Research and Validation Platform**")
659
-
660
- # Initialize session
661
- init_collaborative_session()
662
-
663
- # Sidebar navigation
664
- st.sidebar.title("🤝 Collaboration Tools")
665
- page = st.sidebar.selectbox(
666
- "Select tool:",
667
- [
668
- "Research Projects",
669
- "Community Hypotheses",
670
- "Peer Review System",
671
- "Knowledge Sharing",
672
- ],
673
- )
674
-
675
- # Display user profile in sidebar
676
- st.sidebar.markdown("---")
677
- st.sidebar.markdown("**Your Profile**")
678
- profile = st.session_state.user_profile
679
- st.sidebar.write(f"**Name:** {profile['name']}")
680
- st.sidebar.write(f"**Reputation:** {profile['reputation_score']}")
681
- st.sidebar.write(f"**Contributions:** {profile['contributions']}")
682
-
683
- # Render selected page
684
- if page == "Research Projects":
685
- render_research_projects()
686
- elif page == "Community Hypotheses":
687
- render_community_hypotheses()
688
- elif page == "Peer Review System":
689
- render_peer_review_system()
690
- elif page == "Knowledge Sharing":
691
- render_knowledge_sharing()
692
-
693
- # Footer
694
- st.sidebar.markdown("---")
695
- st.sidebar.markdown("**POLYMEROS Community**")
696
- st.sidebar.markdown("*Advancing polymer science together*")
697
-
698
-
699
- if __name__ == "__main__":
700
- main()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
pages/Educational_Interface.py DELETED
@@ -1,405 +0,0 @@
1
- """
2
- Educational Interface Page for POLYMEROS
3
- Interactive learning system with adaptive progression and virtual laboratory
4
- """
5
-
6
- import streamlit as st
7
- import numpy as np
8
- import matplotlib.pyplot as plt
9
- import json
10
- from typing import Dict, List, Any
11
-
12
- # Import POLYMEROS educational components
13
- import sys
14
- import os
15
-
16
- sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), "modules"))
17
-
18
- from modules.educational_framework import EducationalFramework
19
-
20
-
21
- def init_educational_session():
22
- """Initialize educational session state"""
23
- if "educational_framework" not in st.session_state:
24
- st.session_state.educational_framework = EducationalFramework()
25
-
26
- if "current_user_id" not in st.session_state:
27
- st.session_state.current_user_id = "demo_user"
28
-
29
- if "user_progress" not in st.session_state:
30
- st.session_state.user_progress = (
31
- st.session_state.educational_framework.initialize_user(
32
- st.session_state.current_user_id
33
- )
34
- )
35
-
36
-
37
- def render_competency_assessment():
38
- """Render interactive competency assessment"""
39
- st.header("🧪 Knowledge Assessment")
40
-
41
- domains = ["spectroscopy_basics", "polymer_aging", "ai_ml_concepts"]
42
- selected_domain = st.selectbox(
43
- "Select assessment domain:",
44
- domains,
45
- format_func=lambda x: x.replace("_", " ").title(),
46
- )
47
-
48
- framework = st.session_state.educational_framework
49
- assessor = framework.competency_assessor
50
-
51
- if selected_domain in assessor.assessment_tasks:
52
- tasks = assessor.assessment_tasks[selected_domain]
53
-
54
- st.subheader(f"Assessment: {selected_domain.replace('_', ' ').title()}")
55
-
56
- responses = []
57
- for i, task in enumerate(tasks):
58
- st.write(f"**Question {i+1}:** {task['question']}")
59
-
60
- response = st.radio(
61
- f"Select answer for question {i+1}:",
62
- options=range(len(task["options"])),
63
- format_func=lambda x, task=task: task["options"][x],
64
- key=f"q_{selected_domain}_{i}",
65
- index=0,
66
- )
67
- responses.append(response)
68
-
69
- if st.button("Submit Assessment", key=f"submit_{selected_domain}"):
70
- results = framework.assess_user_competency(selected_domain, responses)
71
-
72
- st.success(f"Assessment completed! Score: {results['score']:.1%}")
73
- st.write(f"**Your level:** {results['level']}")
74
-
75
- st.subheader("Detailed Feedback:")
76
- for feedback in results["feedback"]:
77
- st.write(feedback)
78
-
79
- st.subheader("Recommendations:")
80
- for rec in results["recommendations"]:
81
- st.write(f"• {rec}")
82
-
83
-
84
- def render_learning_path():
85
- """Render personalized learning path"""
86
- st.header("🎯 Your Learning Path")
87
-
88
- user_progress = st.session_state.user_progress
89
- framework = st.session_state.educational_framework
90
-
91
- # Display current progress
92
- col1, col2, col3 = st.columns(3)
93
-
94
- with col1:
95
- st.metric("Completed Objectives", len(user_progress.completed_objectives))
96
-
97
- with col2:
98
- avg_score = (
99
- np.mean(list(user_progress.competency_scores.values()))
100
- if user_progress.competency_scores
101
- else 0
102
- )
103
- st.metric("Average Score", f"{avg_score:.1%}")
104
-
105
- with col3:
106
- st.metric("Current Level", user_progress.current_level.title())
107
-
108
- # Learning style selection
109
- st.subheader("Learning Preferences")
110
- learning_styles = ["visual", "hands-on", "theoretical", "collaborative"]
111
-
112
- current_style = user_progress.preferred_learning_style
113
- new_style = st.selectbox(
114
- "Preferred learning style:",
115
- learning_styles,
116
- index=(
117
- learning_styles.index(current_style)
118
- if current_style in learning_styles
119
- else 0
120
- ),
121
- )
122
-
123
- if new_style != current_style:
124
- user_progress.preferred_learning_style = new_style
125
- framework.save_user_progress()
126
- st.success("Learning style updated!")
127
-
128
- # Target competencies
129
- st.subheader("Learning Goals")
130
- target_competencies = st.multiselect(
131
- "Select areas you want to focus on:",
132
- ["spectroscopy", "polymer_science", "machine_learning", "data_analysis"],
133
- default=["spectroscopy", "polymer_science"],
134
- )
135
-
136
- if st.button("Generate Learning Path"):
137
- learning_path = framework.get_personalized_learning_path(target_competencies)
138
-
139
- if learning_path:
140
- st.subheader("Recommended Learning Path:")
141
-
142
- for i, item in enumerate(learning_path):
143
- objective = item["objective"]
144
-
145
- with st.expander(
146
- f"{i+1}. {objective['title']} (Level {objective['difficulty_level']})"
147
- ):
148
- st.write(f"**Description:** {objective['description']}")
149
- st.write(
150
- f"**Estimated time:** {objective['estimated_time']} minutes"
151
- )
152
- st.write(
153
- f"**Recommended approach:** {item['recommended_approach']}"
154
- )
155
-
156
- if item["priority_resources"]:
157
- st.write("**Priority resources:**")
158
- for resource in item["priority_resources"]:
159
- st.write(f"- {resource['type']}: {resource['url']}")
160
- else:
161
- st.info("Complete an assessment to get personalized recommendations!")
162
-
163
-
164
- def render_virtual_laboratory():
165
- """Render virtual laboratory interface"""
166
- st.header("🔬 Virtual Laboratory")
167
-
168
- framework = st.session_state.educational_framework
169
- virtual_lab = framework.virtual_lab
170
-
171
- # Select experiment
172
- experiments = list(virtual_lab.experiments.keys())
173
- selected_experiment = st.selectbox(
174
- "Select experiment:",
175
- experiments,
176
- format_func=lambda x: virtual_lab.experiments[x]["title"],
177
- )
178
-
179
- experiment_info = virtual_lab.experiments[selected_experiment]
180
-
181
- st.subheader(experiment_info["title"])
182
- st.write(f"**Description:** {experiment_info['description']}")
183
- st.write(f"**Difficulty:** {experiment_info['difficulty']}/5")
184
- st.write(f"**Estimated time:** {experiment_info['estimated_time']} minutes")
185
-
186
- # Experiment-specific inputs
187
- if selected_experiment == "polymer_identification":
188
- st.subheader("Polymer Identification Challenge")
189
- polymer_type = st.selectbox(
190
- "Select polymer to analyze:", ["PE", "PP", "PS", "PVC"]
191
- )
192
-
193
- if st.button("Generate Spectrum"):
194
- result = framework.run_virtual_experiment(
195
- selected_experiment, {"polymer_type": polymer_type}
196
- )
197
-
198
- if result.get("success"):
199
- # Plot the spectrum
200
- fig, ax = plt.subplots(figsize=(10, 6))
201
- ax.plot(result["wavenumbers"], result["spectrum"])
202
- ax.set_xlabel("Wavenumber (cm⁻¹)")
203
- ax.set_ylabel("Intensity")
204
- ax.set_title(f"Unknown Polymer Spectrum")
205
- ax.grid(True, alpha=0.3)
206
- st.pyplot(fig)
207
-
208
- st.subheader("Analysis Hints:")
209
- for hint in result["hints"]:
210
- st.write(f"💡 {hint}")
211
-
212
- # User identification
213
- user_guess = st.selectbox(
214
- "Your identification:", ["PE", "PP", "PS", "PVC"]
215
- )
216
- if st.button("Submit Identification"):
217
- if user_guess == polymer_type:
218
- st.success("🎉 Correct! Well done!")
219
- else:
220
- st.error(f"❌ Incorrect. The correct answer is {polymer_type}")
221
-
222
- elif selected_experiment == "aging_simulation":
223
- st.subheader("Polymer Aging Simulation")
224
- aging_time = st.slider("Aging time (hours):", 0, 200, 50)
225
-
226
- if st.button("Run Aging Simulation"):
227
- result = framework.run_virtual_experiment(
228
- selected_experiment, {"aging_time": aging_time}
229
- )
230
-
231
- if result.get("success"):
232
- # Plot comparison
233
- fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(15, 6))
234
-
235
- # Initial spectrum
236
- ax1.plot(result["wavenumbers"], result["initial_spectrum"])
237
- ax1.set_title("Initial Spectrum")
238
- ax1.set_xlabel("Wavenumber (cm⁻¹)")
239
- ax1.set_ylabel("Intensity")
240
- ax1.grid(True, alpha=0.3)
241
-
242
- # Aged spectrum
243
- ax2.plot(result["wavenumbers"], result["aged_spectrum"])
244
- ax2.set_title(f"After {aging_time} hours")
245
- ax2.set_xlabel("Wavenumber (cm⁻¹)")
246
- ax2.set_ylabel("Intensity")
247
- ax2.grid(True, alpha=0.3)
248
-
249
- plt.tight_layout()
250
- st.pyplot(fig)
251
-
252
- st.subheader("Observations:")
253
- for obs in result["observations"]:
254
- st.write(f"📊 {obs}")
255
-
256
- elif selected_experiment == "model_training":
257
- st.subheader("Train Your Own Model")
258
-
259
- col1, col2 = st.columns(2)
260
- with col1:
261
- model_type = st.selectbox("Model type:", ["CNN", "ResNet", "Transformer"])
262
- with col2:
263
- epochs = st.slider("Training epochs:", 5, 50, 10)
264
-
265
- if st.button("Start Training"):
266
- with st.spinner("Training model..."):
267
- result = framework.run_virtual_experiment(
268
- selected_experiment, {"model_type": model_type, "epochs": epochs}
269
- )
270
-
271
- if result.get("success"):
272
- # Plot training metrics
273
- fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 5))
274
-
275
- # Training loss
276
- ax1.plot(result["train_losses"])
277
- ax1.set_title("Training Loss")
278
- ax1.set_xlabel("Epoch")
279
- ax1.set_ylabel("Loss")
280
- ax1.grid(True, alpha=0.3)
281
-
282
- # Validation accuracy
283
- ax2.plot(result["val_accuracies"])
284
- ax2.set_title("Validation Accuracy")
285
- ax2.set_xlabel("Epoch")
286
- ax2.set_ylabel("Accuracy")
287
- ax2.grid(True, alpha=0.3)
288
-
289
- plt.tight_layout()
290
- st.pyplot(fig)
291
-
292
- st.success(
293
- f"Training completed! Final accuracy: {result['final_accuracy']:.3f}"
294
- )
295
-
296
- st.subheader("Training Insights:")
297
- for insight in result["insights"]:
298
- st.write(f"🎯 {insight}")
299
-
300
-
301
- def render_progress_analytics():
302
- """Render learning analytics dashboard"""
303
- st.header("📊 Your Progress Analytics")
304
-
305
- framework = st.session_state.educational_framework
306
- analytics = framework.get_learning_analytics()
307
-
308
- if analytics:
309
- # Overview metrics
310
- col1, col2, col3, col4 = st.columns(4)
311
-
312
- with col1:
313
- st.metric("Completed Objectives", analytics["completed_objectives"])
314
-
315
- with col2:
316
- st.metric("Study Time", f"{analytics['total_study_time']} min")
317
-
318
- with col3:
319
- st.metric("Current Level", analytics["current_level"].title())
320
-
321
- with col4:
322
- st.metric("Sessions", analytics["session_count"])
323
-
324
- # Competency scores
325
- if analytics["competency_scores"]:
326
- st.subheader("Competency Scores")
327
-
328
- domains = list(analytics["competency_scores"].keys())
329
- scores = list(analytics["competency_scores"].values())
330
-
331
- fig, ax = plt.subplots(figsize=(10, 6))
332
- bars = ax.bar(domains, scores)
333
- ax.set_ylabel("Score")
334
- ax.set_title("Competency Assessment Results")
335
- ax.set_ylim(0, 1)
336
-
337
- # Color bars based on score
338
- for bar, score in zip(bars, scores):
339
- if score >= 0.8:
340
- bar.set_color("green")
341
- elif score >= 0.6:
342
- bar.set_color("orange")
343
- else:
344
- bar.set_color("red")
345
-
346
- plt.xticks(rotation=45)
347
- plt.tight_layout()
348
- st.pyplot(fig)
349
-
350
- # Learning style
351
- st.subheader("Learning Profile")
352
- st.write(f"**Preferred learning style:** {analytics['learning_style'].title()}")
353
-
354
- # Recommendations
355
- recommendations = framework.get_learning_recommendations()
356
- if recommendations:
357
- st.subheader("Next Steps")
358
- for rec in recommendations:
359
- st.write(f"• {rec}")
360
- else:
361
- st.info("Complete assessments to see your progress analytics!")
362
-
363
-
364
- def main():
365
- """Main educational interface"""
366
- st.set_page_config(
367
- page_title="POLYMEROS Educational Interface", page_icon="🎓", layout="wide"
368
- )
369
-
370
- st.title("🎓 POLYMEROS Educational Interface")
371
- st.markdown("**Interactive Learning System for Polymer Science and AI**")
372
-
373
- # Initialize session
374
- init_educational_session()
375
-
376
- # Sidebar navigation
377
- st.sidebar.title("📚 Learning Modules")
378
- page = st.sidebar.selectbox(
379
- "Select module:",
380
- [
381
- "Knowledge Assessment",
382
- "Learning Path",
383
- "Virtual Laboratory",
384
- "Progress Analytics",
385
- ],
386
- )
387
-
388
- # Render selected page
389
- if page == "Knowledge Assessment":
390
- render_competency_assessment()
391
- elif page == "Learning Path":
392
- render_learning_path()
393
- elif page == "Virtual Laboratory":
394
- render_virtual_laboratory()
395
- elif page == "Progress Analytics":
396
- render_progress_analytics()
397
-
398
- # Footer
399
- st.sidebar.markdown("---")
400
- st.sidebar.markdown("**POLYMEROS Educational Framework**")
401
- st.sidebar.markdown("*Adaptive learning for polymer science*")
402
-
403
-
404
- if __name__ == "__main__":
405
- main()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
requirements.txt CHANGED
@@ -16,4 +16,20 @@ matplotlib
16
  xgboost
17
  requests
18
  Pillow
19
- plotly
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16
  xgboost
17
  requests
18
  Pillow
19
+ plotly
20
+
21
+ # New additions for enhanced features
22
+ psutil
23
+ joblib
24
+ pytest
25
+ tqdm
26
+ pyarrow
27
+ tenacity
28
+ GitPython
29
+ docker
30
+ async-lru
31
+ anyio
32
+ websocket-client
33
+ inquirerpy
34
+ networkx
35
+ mermaid_cli