Spaces:
Sleeping
Sleeping
devjas1
(FEAT)[Refactor Confidence Visualization and Update CSS]: Remove legacy confidence progress HTML function, enhance softmax confidence calculation, and implement theme-aware custom styles for better UI consistency.
7bc29cd
import os | |
import torch | |
import streamlit as st | |
import hashlib | |
import io | |
from PIL import Image | |
import numpy as np | |
import matplotlib.pyplot as plt | |
from typing import Union | |
import uuid | |
import time | |
from config import TARGET_LEN, LABEL_MAP, MODEL_WEIGHTS_DIR | |
from models.registry import choices, get_model_info | |
from modules.callbacks import ( | |
on_model_change, | |
on_input_mode_change, | |
on_sample_change, | |
reset_results, | |
reset_ephemeral_state, | |
log_message, | |
) | |
from core_logic import get_sample_files, load_model, run_inference, label_file | |
from utils.results_manager import ResultsManager | |
from utils.multifile import process_multiple_files, parse_spectrum_data | |
from utils.preprocessing import ( | |
validate_spectrum_modality, | |
preprocess_spectrum, | |
) | |
from utils.confidence import calculate_softmax_confidence | |
def load_css(file_path): | |
with open(file_path, encoding="utf-8") as f: | |
st.markdown(f"<style>{f.read()}</style>", unsafe_allow_html=True) | |
def create_spectrum_plot(x_raw, y_raw, x_resampled, y_resampled, _cache_key=None): | |
"""Create spectrum visualization plot""" | |
fig, ax = plt.subplots(1, 2, figsize=(13, 5), dpi=100) | |
# Raw spectrum | |
ax[0].plot(x_raw, y_raw, label="Raw", color="dimgray", linewidth=1) | |
ax[0].set_title("Raw Input Spectrum") | |
ax[0].set_xlabel("Wavenumber (cmβ»ΒΉ)") | |
ax[0].set_ylabel("Intensity") | |
ax[0].grid(True, alpha=0.3) | |
ax[0].legend() | |
# Resampled spectrum | |
ax[1].plot( | |
x_resampled, y_resampled, label="Resampled", color="steelblue", linewidth=1 | |
) | |
ax[1].set_title(f"Resampled ({len(y_resampled)} points)") | |
ax[1].set_xlabel("Wavenumber (cmβ»ΒΉ)") | |
ax[1].set_ylabel("Intensity") | |
ax[1].grid(True, alpha=0.3) | |
ax[1].legend() | |
fig.tight_layout() | |
# Convert to image | |
buf = io.BytesIO() | |
plt.savefig(buf, format="png", bbox_inches="tight", dpi=100) | |
buf.seek(0) | |
plt.close(fig) # Prevent memory leaks | |
return Image.open(buf) | |
from typing import Optional | |
def render_kv_grid(d: Optional[dict] = None, ncols: int = 2): | |
if d is None: | |
d = {} | |
if not d: | |
return | |
items = list(d.items()) | |
cols = st.columns(ncols) | |
for i, (k, v) in enumerate(items): | |
with cols[i % ncols]: | |
st.caption(f"**{k}:** {v}") | |
def render_model_meta(model_choice: str): | |
info = get_model_info(model_choice) | |
emoji = info.get("emoji", "") | |
desc = info.get("description", "").strip() | |
acc = info.get("performance", {}).get("accuracy", "-") | |
f1 = info.get("performance", {}).get("f1_score", "-") | |
st.caption(f"{emoji} **Model Snapshot** - {model_choice}") | |
cols = st.columns(2) | |
with cols[0]: | |
st.metric("Accuracy", acc) | |
with cols[1]: | |
st.metric("F1 Score", f1) | |
if desc: | |
st.caption(desc) | |
def get_confidence_description(logit_margin): | |
"""Get human-readable confidence description""" | |
if logit_margin > 1000: | |
return "VERY HIGH", "π’" | |
elif logit_margin > 250: | |
return "HIGH", "π‘" | |
elif logit_margin > 100: | |
return "MODERATE", "π " | |
else: | |
return "LOW", "π΄" | |
def render_sidebar(): | |
with st.sidebar: | |
# Header | |
st.header("AI-Driven Polymer Classification") | |
st.caption( | |
"Analyze and classify polymer degradation with a suite of explainable AI models for Raman & FTIR spectroscopy. β v0.02" | |
) | |
# Model selection | |
st.markdown("##### AI Model Selection") | |
model_emojis = { | |
"figure2": "π", | |
"resnet": "π§ ", | |
"resnet18vision": "ποΈ", | |
"enhanced_cnn": "β¨", | |
"efficient_cnn": "β‘", | |
"hybrid_net": "π§¬", | |
} | |
available_models = choices() | |
model_labels = [ | |
f"{model_emojis.get(name, 'π€')} {name}" for name in available_models | |
] | |
selected_label = st.selectbox( | |
"Choose AI Model", | |
model_labels, | |
key="model_select", | |
on_change=on_model_change, | |
width="stretch", | |
) | |
model_choice = selected_label.split(" ", 1)[1] | |
# Compact metadata directly under dropdown | |
render_model_meta(model_choice) | |
# Collapsed info to reduce clutter | |
with st.expander("About This App", icon=":material/info:", expanded=False): | |
st.markdown( | |
""" | |
**AI-Driven Polymer Analysis Platform** | |
**Purpose**: Classify, analyze, and understand polymer degradation using explainable AI. | |
**Input**: Raman & FTIR spectra in `.txt`, `.csv`, or `.json` formats. | |
**Features**: | |
- Single & Batch Spectrum Analysis | |
- Multi-Model Performance Comparison | |
- Interactive Model Training Hub | |
- Explainable AI (XAI) with feature importance | |
- Modality-Aware Preprocessing | |
**Links** | |
[HF Space](https://huggingface.co/spaces/dev-jas/polymer-aging-ml) | |
[GitHub Repository](https://github.com/KLab-AI3/ml-polymer-recycling) | |
**Contributors** | |
- Dr. Sanmukh Kuppannagari (Mentor) | |
- Dr. Metin Karailyan (Mentor) | |
- Jaser Hasan (Author) | |
**Citation (Baseline Model)** | |
Neo et al., 2023, *Resour. Conserv. Recycl.*, 188, 106718. | |
https://doi.org/10.1016/j.resconrec.2022.106718 | |
""" | |
) | |
def render_input_column(): | |
st.markdown("##### Data Input") | |
# Modality Selection - Moved from sidebar to be the primary context setter | |
st.markdown("###### 1. Choose Spectroscopy Modality") | |
modality = st.selectbox( | |
"Choose Modality", | |
["raman", "ftir"], | |
index=0, | |
key="modality_select", | |
format_func=lambda x: f"{'Raman' if x == 'raman' else 'FTIR'}", | |
help="Select the type of spectroscopy data you are analyzing. This choice affects preprocessing steps.", | |
width=325, | |
) | |
mode = st.radio( | |
"Input mode", | |
["Upload File", "Batch Upload", "Sample Data"], | |
key="input_mode", | |
horizontal=True, | |
on_change=on_input_mode_change, | |
) | |
# == Input Mode Logic == | |
if mode == "Upload File": | |
upload_key = st.session_state["current_upload_key"] | |
up = st.file_uploader( | |
"Upload spectrum file (.txt, .csv, .json)", | |
type=["txt", "csv", "json"], | |
help="Upload spectroscopy data: TXT (2-column), CSV (with headers), or JSON format", | |
key=upload_key, # β versioned key | |
) | |
# Process change immediately | |
if up is not None: | |
raw = up.read() | |
text = raw.decode("utf-8") if isinstance(raw, bytes) else raw | |
# only reparse if its a different file|source | |
if ( | |
st.session_state.get("filename") != getattr(up, "name", None) | |
or st.session_state.get("input_source") != "upload" | |
): | |
st.session_state["input_text"] = text | |
st.session_state["filename"] = getattr(up, "name", None) | |
st.session_state["input_source"] = "upload" | |
# Ensure single file mode | |
st.session_state["batch_mode"] = False | |
st.session_state["status_message"] = ( | |
f"File '{st.session_state['filename']}' ready for analysis" | |
) | |
st.session_state["status_type"] = "success" | |
reset_results("New file uploaded") | |
# Batch Upload tab | |
elif mode == "Batch Upload": | |
st.session_state["batch_mode"] = True | |
# Use a versioned key to ensure the file uploader resets properly. | |
batch_upload_key = f"batch_upload_{st.session_state['uploader_version']}" | |
uploaded_files = st.file_uploader( | |
"Upload multiple spectrum files (.txt, .csv, .json)", | |
type=["txt", "csv", "json"], | |
accept_multiple_files=True, | |
help="Upload spectroscopy files in TXT, CSV, or JSON format.", | |
key=batch_upload_key, | |
) | |
if uploaded_files: | |
# Use a dictionary to keep only unique files based on name and size | |
unique_files = {(file.name, file.size): file for file in uploaded_files} | |
unique_file_list = list(unique_files.values()) | |
num_uploaded = len(uploaded_files) | |
num_unique = len(unique_file_list) | |
# Optionally, inform the user that duplicates were removed | |
if num_uploaded > num_unique: | |
st.info(f"{num_uploaded - num_unique} duplicate file(s) were removed.") | |
# Use the unique list | |
st.session_state["batch_files"] = unique_file_list | |
st.session_state["status_message"] = ( | |
f"{num_unique} ready for batch analysis" | |
) | |
st.session_state["status_type"] = "success" | |
else: | |
st.session_state["batch_files"] = [] | |
# This check prevents resetting the status if files are already staged | |
if not st.session_state.get("batch_files"): | |
st.session_state["status_message"] = ( | |
"No files selected for batch processing" | |
) | |
st.session_state["status_type"] = "info" | |
# Sample tab | |
elif mode == "Sample Data": | |
st.session_state["batch_mode"] = False | |
sample_files = get_sample_files() | |
if sample_files: | |
options = ["-- Select Sample --"] + [p.name for p in sample_files] | |
sel = st.selectbox( | |
"Choose sample spectrum:", | |
options, | |
key="sample_select", | |
on_change=on_sample_change, | |
width=350, | |
) | |
if sel != "-- Select Sample --": | |
st.session_state["status_message"] = ( | |
f"π Sample '{sel}' ready for analysis" | |
) | |
st.session_state["status_type"] = "success" | |
else: | |
st.info("No sample data available") | |
# == Status box (displays the message) == | |
msg = st.session_state.get("status_message", "Ready") | |
typ = st.session_state.get("status_type", "info") | |
if typ == "success": | |
st.success(msg) | |
elif typ == "error": | |
st.error(msg) | |
else: | |
st.info(msg) | |
# Safely get model choice from session state | |
model_choice = st.session_state.get("model_select", " ").split(" ", 1)[1] | |
model = load_model(model_choice) | |
# Determine if the app is ready for inference | |
is_batch_ready = st.session_state.get("batch_mode", False) and st.session_state.get( | |
"batch_files" | |
) | |
is_single_ready = not st.session_state.get( | |
"batch_mode", False | |
) and st.session_state.get("input_text") | |
inference_ready = (is_batch_ready or is_single_ready) and model is not None | |
# Store for other modules to access | |
st.session_state["inference_ready"] = inference_ready | |
# --- Action Buttons --- | |
# Using columns for a side-by-side layout | |
col1, col2 = st.columns(2) | |
with col1: | |
submitted = st.button( | |
"Run Analysis", | |
type="primary", | |
disabled=not inference_ready, | |
use_container_width=True, | |
) | |
with col2: | |
st.button("Reset All", on_click=reset_ephemeral_state, use_container_width=True) | |
# Handle form submission | |
if submitted: | |
st.session_state["run_uuid"] = uuid.uuid4().hex[:8] | |
if st.session_state.get("batch_mode"): | |
batch_files = st.session_state.get("batch_files", []) | |
with st.spinner(f"Processing {len(batch_files)} files ..."): | |
st.session_state["batch_results"] = process_multiple_files( | |
uploaded_files=batch_files, | |
model_choice=model_choice, | |
run_inference_func=run_inference, | |
label_file_func=label_file, | |
modality=st.session_state.get("modality_select", "raman"), | |
) | |
else: | |
try: | |
x_raw, y_raw = parse_spectrum_data( | |
st.session_state["input_text"], | |
filename=st.session_state.get("filename", "unknown"), | |
) | |
# QC Summary | |
st.session_state["qc_summary"] = { | |
"n_points": len(x_raw), | |
"x_min": f"{np.min(x_raw):.1f}", | |
"x_max": f"{np.max(x_raw):.1f}", | |
"monotonic_x": bool(np.all(np.diff(x_raw) > 0)), | |
"nan_free": not ( | |
np.any(np.isnan(x_raw)) or np.any(np.isnan(y_raw)) | |
), | |
"variance_proxy": f"{np.var(y_raw):.2e}", | |
} | |
# Preprocessing parameters | |
preproc_params = { | |
"target_len": TARGET_LEN, | |
"modality": st.session_state.get("modality_select", "raman"), | |
"do_baseline": True, | |
"do_smooth": True, | |
"do_normalize": True, | |
} | |
# Validate that spectrum matches selected modality | |
selected_modality = st.session_state.get("modality_select", "raman") | |
is_valid, issues = validate_spectrum_modality( | |
x_raw, y_raw, selected_modality | |
) | |
if not is_valid: | |
st.warning("β οΈ **Spectrum-Modality Mismatch Detected**") | |
for issue in issues: | |
st.warning(f"β’ {issue}") | |
# Ask user if they want to continue | |
st.info( | |
"π‘ **Suggestion**: Check if the correct modality is selected in the sidebar, or verify your data file." | |
) | |
if st.button("β οΈ Continue Anyway", key="continue_with_mismatch"): | |
st.warning( | |
"Proceeding with potentially mismatched data. Results may be unreliable." | |
) | |
else: | |
st.stop() # Stop processing until user confirms | |
x_resampled, y_resampled = preprocess_spectrum( | |
x_raw, y_raw, **preproc_params | |
) | |
st.session_state["preproc_params"] = preproc_params | |
st.session_state.update( | |
{ | |
"x_raw": x_raw, | |
"y_raw": y_raw, | |
"x_resampled": x_resampled, | |
"y_resampled": y_resampled, | |
"inference_run_once": True, | |
} | |
) | |
except (ValueError, TypeError) as e: | |
st.error(f"Error processing spectrum data: {e}") | |
def render_results_column(): | |
# Get the current mode and check for batch results | |
is_batch_mode = st.session_state.get("batch_mode", False) | |
has_batch_results = "batch_results" in st.session_state | |
if is_batch_mode and has_batch_results: | |
# THEN render the main interactive dashboard from ResultsManager | |
ResultsManager.display_results_table() | |
elif st.session_state.get("inference_run_once", False) and not is_batch_mode: | |
st.markdown("##### Analysis Results") | |
# Get data from session state | |
x_raw = st.session_state.get("x_raw") | |
y_raw = st.session_state.get("y_raw") | |
x_resampled = st.session_state.get("x_resampled") # β NEW | |
y_resampled = st.session_state.get("y_resampled") | |
filename = st.session_state.get("filename", "Unknown") | |
if all(v is not None for v in [x_raw, y_raw, y_resampled]): | |
# Run inference | |
if y_resampled is None: | |
raise ValueError( | |
"y_resampled is None. Ensure spectrum data is properly resampled before proceeding." | |
) | |
cache_key = hashlib.md5( | |
f"{y_resampled.tobytes()}{st.session_state.get('model_select', 'Unknown').split(' ', 1)[1]}".encode() | |
).hexdigest() | |
# MODIFIED: Pass modality to run_inference | |
prediction, logits_list, probs, inference_time, logits = run_inference( | |
y_resampled, | |
( | |
st.session_state.get("model_select", "").split(" ", 1)[1] | |
if "model_select" in st.session_state | |
else None | |
), | |
modality=st.session_state.get("modality_select", "raman"), | |
cache_key=cache_key, | |
) | |
if prediction is None: | |
st.error( | |
"β Inference failed: Model not loaded. Please check that weights are available." | |
) | |
st.stop() # prevents the rest of the code in this block from executing | |
# Store results in session state for the Details tab | |
st.session_state["prediction"] = prediction | |
st.session_state["probs"] = probs | |
st.session_state["inference_time"] = inference_time | |
log_message( | |
f"Inference completed in {inference_time:.2f}s, prediction: {prediction}" | |
) | |
# Get ground truth | |
true_label_idx = label_file(filename) | |
true_label_str = ( | |
LABEL_MAP.get(true_label_idx, "Unknown") | |
if true_label_idx is not None | |
else "Unknown" | |
) | |
# Get prediction | |
predicted_class = LABEL_MAP.get(int(prediction), f"Class {int(prediction)}") | |
# Enhanced confidence calculation | |
if logits is not None: | |
# Use new softmax-based confidence | |
probs_np, max_confidence, confidence_level, confidence_emoji = ( | |
calculate_softmax_confidence(logits) | |
) | |
confidence_desc = confidence_level | |
else: | |
# Fallback to legacy method | |
logit_margin = abs( | |
(logits_list[0] - logits_list[1]) | |
if logits_list is not None and len(logits_list) >= 2 | |
else 0 | |
) | |
confidence_desc, confidence_emoji = get_confidence_description( | |
logit_margin | |
) | |
max_confidence = logit_margin / 10.0 # Normalize for display | |
probs_np = np.array([]) | |
# Store result in results manager for single file too | |
ResultsManager.add_results( | |
filename=filename, | |
model_name=( | |
st.session_state.get("model_select", "").split(" ", 1)[1] | |
if "model_select" in st.session_state | |
else "Unknown" | |
), | |
prediction=int(prediction), | |
predicted_class=predicted_class, | |
confidence=max_confidence, | |
logits=logits_list if logits_list else [], | |
ground_truth=true_label_idx if true_label_idx >= 0 else None, | |
processing_time=inference_time if inference_time is not None else 0.0, | |
metadata={ | |
"confidence_level": confidence_desc, | |
"confidence_emoji": confidence_emoji, | |
}, | |
) | |
# Precompute Stats | |
model_choice = ( | |
st.session_state.get("model_select", "").split(" ", 1)[1] | |
if "model_select" in st.session_state | |
else None | |
) | |
if not model_choice: | |
st.error( | |
"β οΈ Model choice is not defined. Please select a model from the sidebar." | |
) | |
st.stop() | |
model_info = get_model_info(model_choice) | |
st.session_state["model_info"] = model_info | |
model_path = os.path.join(MODEL_WEIGHTS_DIR, f"{model_choice}_model.pth") | |
mtime = os.path.getmtime(model_path) if os.path.exists(model_path) else None | |
file_hash = ( | |
hashlib.md5(open(model_path, "rb").read()).hexdigest() | |
if os.path.exists(model_path) | |
else "N/A" | |
) | |
start_render = time.time() | |
active_tab = st.selectbox( | |
"View Results", | |
["Details", "Technical", "Explanation"], | |
key="active_tab", # reuse the key you were managing manually | |
) | |
if active_tab == "Details": | |
# Use a dynamic and informative title for the expander | |
with st.expander(f"Results for {filename}", expanded=True): | |
# ...inside the Details tab, after metrics... | |
import json, math, uuid | |
st.subheader("Probability Breakdown") | |
def _entropy(ps): | |
ps = [max(min(float(p), 1.0), 1e-12) for p in ps] | |
return -sum(p * math.log(p) for p in ps) | |
def _badge(text, kind="info"): | |
# This function now relies on CSS classes defined in style.css | |
# for better separation of concerns and maintainability. | |
st.markdown( | |
f"<span class='badge badge-{kind}'>{text}</span>", | |
unsafe_allow_html=True, | |
) | |
def _render_prob_row(label: str, prob: float, is_pred: bool): | |
c1, c2, c3 = st.columns([2, 7, 3]) | |
with c1: | |
st.write(label) | |
with c2: | |
st.progress(min(max(prob, 0.0), 1.0)) | |
with c3: | |
suffix = " \u2190 Predicted" if is_pred else "" | |
st.write(f"{prob:.1%}{suffix}") | |
probs = st.session_state.get("probs") | |
prediction = st.session_state.get("prediction") | |
inference_time = float(st.session_state.get("inference_time", 0.0)) | |
if probs is None or len(probs) != 2: | |
st.error( | |
"β Probability values are missing or invalid. Check the inference process." | |
) | |
stable_prob, weathered_prob = 0.0, 0.0 | |
else: | |
stable_prob, weathered_prob = float(probs[0]), float(probs[1]) | |
is_stable_predicted = ( | |
(int(prediction) == 0) | |
if prediction is not None | |
else (stable_prob >= weathered_prob) | |
) | |
is_weathered_predicted = ( | |
(int(prediction) == 1) | |
if prediction is not None | |
else (weathered_prob > stable_prob) | |
) | |
margin = abs(stable_prob - weathered_prob) | |
entropy = _entropy([stable_prob, weathered_prob]) | |
thresh = float(st.session_state.get("decision_threshold", 0.5)) | |
cal = st.session_state.get("calibration", {}) or {} | |
cal_enabled = bool(cal.get("enabled", False)) | |
ece = cal.get("ece", None) | |
ABSTAIN_TAU = 0.10 | |
OOD_MAX_SOFT = 0.60 | |
max_softmax = max(stable_prob, weathered_prob) | |
colA, colB, colC, colD = st.columns([3, 3, 3, 3]) | |
with colA: | |
st.metric( | |
"Predicted", | |
"Stable" if is_stable_predicted else "Weathered", | |
) | |
with colB: | |
st.metric("Decision Margin", f"{margin:.2f}") | |
with colC: | |
st.metric("Entropy", f"{entropy:.3f}") | |
with colD: | |
st.metric("Threshold", f"{thresh:.2f}") | |
row = st.columns([3, 3, 6]) | |
with row[0]: | |
if margin < ABSTAIN_TAU: | |
_badge("Low margin β consider abstain / re-measure", "warn") | |
with row[1]: | |
if max_softmax < OOD_MAX_SOFT: | |
_badge("Low confidence β possible OOD", "bad") | |
with row[2]: | |
if cal_enabled: | |
_badge( | |
( | |
f"Calibrated (ECE={ece:.2%})" | |
if isinstance(ece, (int, float)) | |
else "Calibrated" | |
), | |
"good", | |
) | |
else: | |
_badge( | |
"Uncalibrated β probabilities may be miscalibrated", | |
"info", | |
) | |
st.write("") | |
_render_prob_row( | |
"Stable (Unweathered)", stable_prob, is_stable_predicted | |
) | |
_render_prob_row( | |
"Weathered (Degraded)", weathered_prob, is_weathered_predicted | |
) | |
qc = st.session_state.get("qc_summary", {}) or {} | |
pp = st.session_state.get("preproc_params", {}) or {} | |
model_info = st.session_state.get("model_info", {}) or {} | |
run_info = { | |
"model": model_choice, | |
"inference_time_s": inference_time, | |
"run_uuid": st.session_state.get("run_uuid", ""), | |
"app_commit": st.session_state.get("app_commit", "unknown"), | |
} | |
with st.expander("Input QC"): | |
st.write( | |
{ | |
"n_points": qc.get("n_points", "N/A"), | |
"x_min_cm-1": qc.get("x_min", "N/A"), | |
"x_max_cm-1": qc.get("x_max", "N/A"), | |
"monotonic_x": qc.get("monotonic_x", "N/A"), | |
"nan_free": qc.get("nan_free", "N/A"), | |
"variance_proxy": qc.get("variance_proxy", "N/A"), | |
} | |
) | |
with st.expander("Preprocessing (applied)"): | |
st.write(pp) | |
with st.expander("Model & Run"): | |
st.write( | |
{ | |
"model_name": model_info.get("name", model_choice), | |
"version": model_info.get("version", "n/a"), | |
"weights_mtime": model_info.get("weights_mtime", "n/a"), | |
"cv_accuracy": model_info.get("cv_accuracy", "n/a"), | |
"class_priors": model_info.get("class_priors", "n/a"), | |
**run_info, | |
} | |
) | |
export_payload = { | |
"prediction": "stable" if is_stable_predicted else "weathered", | |
"probs": {"stable": stable_prob, "weathered": weathered_prob}, | |
"margin": margin, | |
"entropy": entropy, | |
"threshold": thresh, | |
"calibration": { | |
"enabled": cal_enabled, | |
"ece": ece, | |
"method": cal.get("method"), | |
"T": cal.get("T"), | |
}, | |
"qc": qc, | |
"preprocessing": pp, | |
"model_info": model_info, | |
"run_info": run_info, | |
} | |
fname = f"result_{run_info['run_uuid'] or uuid.uuid4().hex}.json" | |
st.download_button( | |
"Download result JSON", | |
json.dumps(export_payload, indent=2), | |
file_name=fname, | |
mime="application/json", | |
) | |
# METADATA FOOTER | |
st.caption( | |
f"Analyzed with **{run_info['model']}** in **{inference_time:.2f}s**." | |
) | |
elif active_tab == "Technical": | |
with st.container(): | |
st.markdown("Technical Diagnostics") | |
# Model performance metrics | |
with st.container(border=True): | |
st.markdown("##### **Model Performance**") | |
tech_col1, tech_col2 = st.columns(2) | |
with tech_col1: | |
st.metric("Inference Time", f"{inference_time:.3f}s") | |
st.metric( | |
"Input Length", | |
f"{len(x_raw) if x_raw is not None else 0} points", | |
) | |
st.metric("Resampled Length", f"{TARGET_LEN} points") | |
with tech_col2: | |
st.metric( | |
"Model Loaded", | |
( | |
"β Yes" | |
if st.session_state.get("model_loaded", False) | |
else "β No" | |
), | |
) | |
st.metric("Device", "CPU") | |
st.metric("Confidence Score", f"{max_confidence:.3f}") | |
# Raw logits display | |
with st.container(border=True): | |
st.markdown("##### **Raw Model Outputs (Logits)**") | |
logits_df = { | |
"Class": ( | |
[ | |
LABEL_MAP.get(i, f"Class {i}") | |
for i in range(len(logits_list)) | |
] | |
if logits_list is not None | |
else [] | |
), | |
"Logit Value": ( | |
[f"{score:.4f}" for score in logits_list] | |
if logits_list is not None | |
else [] | |
), | |
"Probability": ( | |
[f"{prob:.4f}" for prob in probs_np] | |
if logits_list is not None and len(probs_np) > 0 | |
else [] | |
), | |
} | |
# Display as a simple table format | |
for i, (cls, logit, prob) in enumerate( | |
zip( | |
logits_df["Class"], | |
logits_df["Logit Value"], | |
logits_df["Probability"], | |
) | |
): | |
col1, col2, col3 = st.columns([2, 1, 1]) | |
with col1: | |
if i == prediction: | |
st.markdown(f"**{cls}** β Predicted") | |
else: | |
st.markdown(cls) | |
with col2: | |
st.caption(f"Logit: {logit}") | |
with col3: | |
st.caption(f"Prob: {prob}") | |
# Spectrum statistics in organized sections | |
with st.container(border=True): | |
st.markdown("##### **Spectrum Analysis**") | |
spec_cols = st.columns(2) | |
with spec_cols[0]: | |
st.markdown("**Original Spectrum:**") | |
render_kv_grid( | |
{ | |
"Length": f"{len(x_raw) if x_raw is not None else 0} points", | |
"Range": ( | |
f"{min(x_raw):.1f} - {max(x_raw):.1f} cmβ»ΒΉ" | |
if x_raw is not None | |
else "N/A" | |
), | |
"Min Intensity": ( | |
f"{min(y_raw):.2e}" | |
if y_raw is not None | |
else "N/A" | |
), | |
"Max Intensity": ( | |
f"{max(y_raw):.2e}" | |
if y_raw is not None | |
else "N/A" | |
), | |
}, | |
ncols=1, | |
) | |
with spec_cols[1]: | |
st.markdown("**Processed Spectrum:**") | |
render_kv_grid( | |
{ | |
"Length": f"{TARGET_LEN} points", | |
"Resampling": "Linear interpolation", | |
"Normalization": "None", | |
"Input Shape": f"(1, 1, {TARGET_LEN})", | |
}, | |
ncols=1, | |
) | |
# Model information | |
with st.container(border=True): | |
st.markdown("##### **Model Information**") | |
model_info_cols = st.columns(2) | |
with model_info_cols[0]: | |
render_kv_grid( | |
{ | |
"Architecture": model_choice, | |
"Path": model_path, | |
"Weights Modified": ( | |
time.strftime( | |
"%Y-%m-%d %H:%M:%S", time.localtime(mtime) | |
) | |
if mtime | |
else "N/A" | |
), | |
}, | |
ncols=1, | |
) | |
with model_info_cols[1]: | |
if os.path.exists(model_path): | |
file_hash = hashlib.md5( | |
open(model_path, "rb").read() | |
).hexdigest() | |
render_kv_grid( | |
{ | |
"Weights Hash": f"{file_hash[:16]}...", | |
"Output Shape": f"(1, {len(LABEL_MAP)})", | |
"Activation": "Softmax", | |
}, | |
ncols=1, | |
) | |
# Debug logs (collapsed by default) | |
with st.expander("π Debug Logs", expanded=False): | |
log_content = "\n".join( | |
st.session_state.get("log_messages", []) | |
) | |
if log_content.strip(): | |
st.code(log_content, language="text") | |
else: | |
st.caption("No debug logs available") | |
elif active_tab == "Explanation": | |
with st.container(): | |
st.markdown("### π Methodology & Interpretation") | |
st.markdown("#### Analysis Pipeline") | |
process_steps = [ | |
"π **Data Input**: Upload a spectrum file (`.txt`, `.csv`, `.json`) and select the spectroscopy modality (Raman or FTIR).", | |
"π¬ **Modality-Aware Preprocessing**: The spectrum is automatically processed with steps tailored to the selected modality, including baseline correction, smoothing, normalization, and resampling to a fixed length (500 points).", | |
"π§ **AI Inference**: A selected model from the registry (e.g., `Figure2CNN`, `ResNet`, `EnhancedCNN`) analyzes the processed spectrum to identify key patterns.", | |
"π **Classification & Confidence**: The model outputs a binary prediction (Stable vs. Weathered) along with a detailed probability breakdown and confidence score.", | |
"β **Validation & Explainability**: Results are presented with technical diagnostics, and where possible, explainability metrics to interpret the model's decision.", | |
] | |
for step in process_steps: | |
st.markdown(f"- {step}") | |
st.markdown("---") | |
# Model interpretation | |
st.markdown("#### Scientific Interpretation") | |
interp_col1, interp_col2 = st.columns(2) | |
with interp_col1: | |
st.markdown("**Stable (Unweathered) Polymers:**") | |
st.info( | |
""" | |
- **Spectral Signature**: Sharp, well-defined peaks corresponding to the polymer's known vibrational modes. | |
- **Chemical State**: Minimal evidence of oxidation or chain scission. The polymer backbone is intact. | |
- **Model Behavior**: The AI identifies a strong match with the spectral fingerprint of a non-degraded reference material. | |
- **Implication**: Suitable for high-quality recycling applications. | |
""" | |
) | |
with interp_col2: | |
st.markdown("**Weathered (Degraded) Polymers:**") | |
st.warning( | |
""" | |
- **Spectral Signature**: Peak broadening, baseline shifts, and the emergence of new peaks (e.g., carbonyl group at ~1715 cmβ»ΒΉ). | |
- **Chemical State**: Evidence of oxidation, hydrolysis, or other degradation pathways. | |
- **Model Behavior**: The AI detects features that deviate significantly from the reference fingerprint, indicating chemical alteration. | |
- **Implication**: May require more intensive processing or be unsuitable for certain recycling streams. | |
""" | |
) | |
st.markdown("---") | |
# Applications | |
st.markdown("#### Research & Industrial Applications") | |
applications = [ | |
" **Material Science**: Quantify degradation rates and study aging mechanisms in novel polymers.", | |
"β»οΈ **Circular Economy**: Automate the quality control and sorting of post-consumer plastics for recycling.", | |
"π± **Environmental Science**: Analyze the weathering of microplastics in various environmental conditions.", | |
"π **Industrial QC**: Monitor material integrity and predict product lifetime in manufacturing processes.", | |
"π€ **AI-Driven Discovery**: Use explainability features to generate new hypotheses about material behavior.", | |
] | |
for app in applications: | |
st.markdown(f"- {app}") | |
# Technical details | |
with st.expander( | |
"π§ Technical Architecture Details", expanded=False | |
): | |
st.markdown( | |
""" | |
**Model Architectures:** | |
- The app features a registry of models, including the `Figure2CNN` baseline, `ResNet` variants, and more advanced custom architectures like `EnhancedCNN` and `HybridSpectralNet`. | |
- Each model is trained on a comprehensive dataset of stable and weathered polymer spectra. | |
**Unified Training Engine:** | |
- A central `TrainingEngine` ensures that all models are trained and validated using a consistent, reproducible 10-fold cross-validation strategy. | |
- This engine can be accessed via the **CLI** (`scripts/train_model.py`) for automated experiments or the **UI** ("Model Training Hub") for interactive use. | |
**Explainability & Transparency (XAI):** | |
- **Feature Importance**: The system is designed to incorporate SHAP and gradient-based methods to highlight which spectral regions most influence a prediction. | |
- **Uncertainty Quantification**: Advanced models can estimate both model (epistemic) and data (aleatoric) uncertainty. | |
- **Data Provenance**: The enhanced data pipeline tracks every preprocessing step, ensuring full traceability from raw data to final prediction. | |
""" | |
) | |
render_time = time.time() - start_render | |
log_message( | |
f"col2 rendered in {render_time:.2f}s, active tab: {active_tab}" | |
) | |
with st.expander("Spectrum Preprocessing Results", expanded=False): | |
st.markdown("---") | |
st.markdown("##### Spectral Analysis") | |
# Add some context about the preprocessing | |
st.markdown( | |
""" | |
**Preprocessing Overview:** | |
- **Original Spectrum**: Raw Raman data as uploaded | |
- **Resampled Spectrum**: Data interpolated to 500 points for model input | |
- **Purpose**: Ensures consistent input dimensions for neural network | |
""" | |
) | |
# Create and display plot | |
cache_key = hashlib.md5( | |
f"{(x_raw.tobytes() if x_raw is not None else b'')}" | |
f"{(y_raw.tobytes() if y_raw is not None else b'')}" | |
f"{(x_resampled.tobytes() if x_resampled is not None else b'')}" | |
f"{(y_resampled.tobytes() if y_resampled is not None else b'')}".encode() | |
).hexdigest() | |
spectrum_plot = create_spectrum_plot( | |
x_raw, y_raw, x_resampled, y_resampled, _cache_key=cache_key | |
) | |
st.image( | |
spectrum_plot, | |
caption="Raman Spectrum: Raw vs Processed", | |
use_container_width=True, | |
) | |
else: | |
st.markdown( | |
""" | |
##### How to Get Started | |
1. **Select an AI Model:** Use the dropdown menu in the sidebar to choose a model. | |
2. **Provide Your Data:** Select one of the three input modes: | |
- **Upload File:** Analyze a single spectrum. | |
- **Batch Upload:** Process multiple files at once. | |
- **Sample Data:** Explore functionality with pre-loaded examples. | |
3. **Run Analysis:** Click the "Run Analysis" button to generate the classification results. | |
--- | |
##### Supported Data Format | |
- **File Type(s):** `.txt`, `.csv`, `.json` | |
- **Content:** Must contain two columns: `wavenumber` and `intensity`. | |
- **Separators:** Values can be separated by spaces or commas. | |
- **Preprocessing:** Your spectrum will be automatically resampled to 500 data points to match the model's input requirements. | |
- **Examples:** Use the "Sample Data" input mode to see examples, or find public data on sites like Open Specy. | |
""" | |
) | |
else: | |
# Getting Started | |
st.markdown( | |
""" | |
##### How to Get Started | |
1. **Select an AI Model:** Use the dropdown menu in the sidebar to choose a model. | |
2. **Provide Your Data:** Select one of the three input modes: | |
- **Upload File:** Analyze a single spectrum. | |
- **Batch Upload:** Process multiple files at once. | |
- **Sample Data:** Explore functionality with pre-loaded examples. | |
3. **Run Analysis:** Click the "Run Analysis" button to generate the classification results. | |
--- | |
##### Supported Data Format | |
- **File Type(s):** `.txt`, `.csv`, `.json` | |
- **Content:** Must contain two columns: `wavenumber` and `intensity`. | |
- **Separators:** Values can be separated by spaces or commas. | |
- **Preprocessing:** Your spectrum will be automatically resampled to 500 data points to match the model's input requirements. | |
- **Examples:** Use the "Sample Data" input mode to see examples, or find public data on sites like Open Specy. | |
""" | |
) | |
def render_comparison_tab(): | |
"""Render the multi-model comparison interface""" | |
import streamlit as st | |
import matplotlib.pyplot as plt | |
from models.registry import ( | |
choices, | |
validate_model_list, | |
models_for_modality, | |
get_models_metadata, | |
) | |
from utils.results_manager import ResultsManager | |
from core_logic import get_sample_files, run_inference | |
from utils.preprocessing import preprocess_spectrum | |
from utils.multifile import parse_spectrum_data | |
import numpy as np | |
import time | |
st.markdown("### Multi-Model Comparison Analysis") | |
st.markdown( | |
"Compare predictions across different AI models for comprehensive analysis." | |
) | |
# Use the global modality selector from the main page | |
modality = st.session_state.get("modality_select", "raman") | |
st.info( | |
f"Comparing models using **{modality.upper()}** preprocessing parameters. You can change this on the 'Upload and Run' page." | |
) | |
compatible_models = models_for_modality(modality) | |
if not compatible_models: | |
st.error(f"No models available for {modality.upper()} modality") | |
return | |
# Enhanced model selection with metadata | |
st.markdown("##### Select Models for Comparison") | |
# Display model information | |
models_metadata = get_models_metadata() | |
# Create enhanced multiselect with model descriptions | |
model_options = [] | |
model_descriptions = {} | |
for model in compatible_models: | |
desc = models_metadata.get(model, {}).get("description", "No description") | |
model_options.append(model) | |
model_descriptions[model] = desc | |
selected_models = st.multiselect( | |
"Choose models to compare", | |
model_options, | |
default=(model_options[:2] if len(model_options) >= 2 else model_options), | |
help="Select 2 or more models to compare their predictions side-by-side", | |
key="comparison_model_select", | |
) | |
# Display selected model information | |
if selected_models: | |
with st.expander("Selected Model Details", expanded=False): | |
for model in selected_models: | |
info = models_metadata.get(model, {}) | |
st.markdown(f"**{model}**: {info.get('description', 'No description')}") | |
if "citation" in info: | |
st.caption(f"Citation: {info['citation']}") | |
if len(selected_models) < 2: | |
st.warning("β οΈ Please select at least 2 models for comparison.") | |
# Input selection for comparison | |
col1, col2 = st.columns([1, 1.5]) | |
with col1: | |
st.markdown("###### Input Data") | |
# File upload for comparison | |
comparison_file = st.file_uploader( | |
"Upload spectrum for comparison", | |
type=["txt", "csv", "json"], | |
key="comparison_file_upload", | |
help="Upload a spectrum file to test across all selected models", | |
) | |
# Or select sample data | |
selected_sample = None # Initialize with a default value | |
sample_files = get_sample_files() | |
if sample_files: | |
sample_options = ["-- Select Sample --"] + [p.name for p in sample_files] | |
selected_sample = st.selectbox( | |
"Or choose sample data", sample_options, key="comparison_sample_select" | |
) | |
# Get modality from session state | |
modality = st.session_state.get("modality_select", "raman") | |
st.info(f"Using {modality.upper()} preprocessing parameters") | |
# Run comparison button | |
run_comparison = st.button( | |
"Run Multi-Model Comparison", | |
type="primary", | |
disabled=not ( | |
comparison_file | |
or (sample_files and selected_sample != "-- Select Sample --") | |
), | |
) | |
with col2: | |
st.markdown("###### Comparison Results") | |
if run_comparison: | |
# Determine input source | |
input_text = None | |
filename = "unknown" | |
if comparison_file: | |
raw = comparison_file.read() | |
input_text = raw.decode("utf-8") if isinstance(raw, bytes) else raw | |
filename = comparison_file.name | |
elif sample_files and selected_sample != "-- Select Sample --": | |
sample_path = next(p for p in sample_files if p.name == selected_sample) | |
with open(sample_path, "r", encoding="utf-8") as f: | |
input_text = f.read() | |
filename = selected_sample | |
if input_text: | |
try: | |
# Parse spectrum data | |
x_raw, y_raw = parse_spectrum_data( | |
str(input_text), filename or "unknown_filename" | |
) | |
# Validate spectrum modality | |
is_valid, issues = validate_spectrum_modality( | |
x_raw, y_raw, modality | |
) | |
if not is_valid: | |
st.error("**Spectrum-Modality Mismatch in Comparison**") | |
for issue in issues: | |
st.error(f"β’ {issue}") | |
st.info( | |
"Please check the selected modality or verify your data file." | |
) | |
return # Exit comparison if validation fails | |
# Preprocess spectrum once | |
_, y_processed = preprocess_spectrum( | |
x_raw, y_raw, modality=modality, target_len=500 | |
) | |
# Synchronous processing | |
comparison_results = {} | |
progress_bar = st.progress(0) | |
status_text = st.empty() | |
for i, model_name in enumerate(selected_models): | |
status_text.text(f"Running inference with {model_name}...") | |
start_time = time.time() | |
# Run inference | |
cache_key = hashlib.md5( | |
f"{y_processed.tobytes()}{model_name}".encode() | |
).hexdigest() | |
prediction, logits_list, probs, inference_time, logits = ( | |
run_inference( | |
y_processed, | |
model_name, | |
modality=modality, | |
cache_key=cache_key, | |
) | |
) | |
processing_time = time.time() - start_time | |
# --- FIX FOR SYNCHRONOUS PATH: Handle silent failure --- | |
if prediction is None: | |
comparison_results[model_name] = { | |
"status": "failed", | |
"error": "Model failed to load or returned None.", | |
} | |
else: | |
# Map prediction to class name | |
class_names = ["Stable", "Weathered"] | |
predicted_class = ( | |
class_names[int(prediction)] | |
if int(prediction) < len(class_names) | |
else f"Class_{prediction}" | |
) | |
confidence = ( | |
float(np.max(probs)) | |
if probs is not None and probs.size > 0 | |
else 0.0 | |
) | |
comparison_results[model_name] = { | |
"prediction": prediction, | |
"predicted_class": predicted_class, | |
"confidence": confidence, | |
"probs": (probs.tolist() if probs is not None else []), | |
"logits": ( | |
logits_list if logits_list is not None else [] | |
), | |
"processing_time": inference_time or 0.0, | |
"status": "success", | |
} | |
progress_bar.progress((i + 1) / len(selected_models)) | |
status_text.text("Comparison complete!") | |
# Enhanced results display | |
if comparison_results: | |
# Filter successful results | |
successful_results = { | |
k: v | |
for k, v in comparison_results.items() | |
if v.get("status") == "success" | |
} | |
failed_results = { | |
k: v | |
for k, v in comparison_results.items() | |
if v.get("status") == "failed" | |
} | |
if failed_results: | |
st.error( | |
f"Failed models: {', '.join(failed_results.keys())}" | |
) | |
for model, result in failed_results.items(): | |
st.error( | |
f"{model}: {result.get('error', 'Unknown error')}" | |
) | |
if successful_results: | |
try: | |
st.markdown("###### Model Predictions") | |
# Create enhanced comparison table | |
import pandas as pd | |
table_data = [] | |
for model_name, result in successful_results.items(): | |
row = { | |
"Model": model_name, | |
"Prediction": result["predicted_class"], | |
"Confidence": f"{result['confidence']:.3f}", | |
"Processing Time (s)": f"{result['processing_time']:.3f}", | |
"Agreement": ( | |
"β" | |
if len( | |
set( | |
r["prediction"] | |
for r in successful_results.values() | |
) | |
) | |
== 1 | |
else "β" | |
), | |
} | |
table_data.append(row) | |
df = pd.DataFrame(table_data) | |
st.dataframe(df, use_container_width=True) | |
# Model agreement analysis | |
predictions = [ | |
r["prediction"] for r in successful_results.values() | |
] | |
agreement_rate = len(set(predictions)) == 1 | |
if agreement_rate: | |
st.success("π― All models agree on the prediction!") | |
else: | |
st.warning( | |
"β οΈ Models disagree - review individual confidences" | |
) | |
# Enhanced visualization section | |
st.markdown("##### Enhanced Analysis Dashboard") | |
tab1, tab2, tab3 = st.tabs( | |
[ | |
"Confidence Analysis", | |
"Performance Metrics", | |
"Detailed Breakdown", | |
] | |
) | |
with tab1: | |
try: | |
# Enhanced confidence comparison | |
col1, col2 = st.columns(2) | |
with col1: | |
# Bar chart of confidences | |
models = list(successful_results.keys()) | |
confidences = [ | |
successful_results[m]["confidence"] | |
for m in models | |
] | |
if len(confidences) == 0: | |
st.warning( | |
"No confidence data available for visualization." | |
) | |
else: | |
fig, ax = plt.subplots(figsize=(8, 5)) | |
colors = plt.cm.Set3( | |
np.linspace(0, 1, len(models)) | |
) | |
bars = ax.bar( | |
models, | |
confidences, | |
alpha=0.8, | |
color=colors, | |
) | |
# Add value labels on bars | |
for bar, conf in zip(bars, confidences): | |
height = bar.get_height() | |
ax.text( | |
bar.get_x() | |
+ bar.get_width() / 2.0, | |
height + 0.01, | |
f"{conf:.3f}", | |
ha="center", | |
va="bottom", | |
) | |
ax.set_ylabel("Confidence") | |
ax.set_title( | |
"Model Confidence Comparison" | |
) | |
ax.set_ylim(0, 1.1) | |
plt.xticks(rotation=45) | |
plt.tight_layout() | |
st.pyplot(fig) | |
with col2: | |
# Confidence distribution | |
st.markdown("**Confidence Statistics**") | |
if len(confidences) == 0: | |
st.warning( | |
"No confidence data available for statistics." | |
) | |
else: | |
conf_stats = { | |
"Mean": np.mean(confidences), | |
"Std Dev": np.std(confidences), | |
"Min": np.min(confidences), | |
"Max": np.max(confidences), | |
"Range": np.max(confidences) | |
- np.min(confidences), | |
} | |
for stat, value in conf_stats.items(): | |
st.metric(stat, f"{value:.4f}") | |
except ValueError as e: | |
st.error(f"Error rendering results: {e}") | |
except ValueError as e: | |
st.error(f"Error rendering results: {e}") | |
st.error(f"Error in Confidence Analysis tab: {e}") | |
with tab2: | |
# Performance metrics | |
models = list(successful_results.keys()) | |
times = [ | |
successful_results[m]["processing_time"] | |
for m in models | |
] | |
if len(times) == 0: | |
st.warning( | |
"No performance data available for visualization" | |
) | |
else: | |
perf_col1, perf_col2 = st.columns(2) | |
with perf_col1: | |
# Processing time comparison | |
fig, ax = plt.subplots(figsize=(8, 5)) | |
bars = ax.bar( | |
models, times, alpha=0.8, color="skyblue" | |
) | |
for bar, time_val in zip(bars, times): | |
height = bar.get_height() | |
ax.text( | |
bar.get_x() + bar.get_width() / 2.0, | |
height + 0.001, | |
f"{time_val:.3f}s", | |
ha="center", | |
va="bottom", | |
) | |
ax.set_ylabel("Processing Time (s)") | |
ax.set_title("Model Processing Time Comparison") | |
plt.xticks(rotation=45) | |
plt.tight_layout() | |
st.pyplot(fig) | |
with perf_col2: | |
# Performance statistics | |
st.markdown("**Performance Statistics**") | |
perf_stats = { | |
"Fastest Model": models[np.argmin(times)], | |
"Slowest Model": models[np.argmax(times)], | |
"Total Time": f"{np.sum(times):.3f}s", | |
"Average Time": f"{np.mean(times):.3f}s", | |
"Speed Difference": f"{np.max(times) - np.min(times):.3f}s", | |
} | |
for stat, value in perf_stats.items(): | |
st.write(f"**{stat}**: {value}") | |
with tab3: | |
# Detailed breakdown | |
for ( | |
model_name, | |
result, | |
) in successful_results.items(): | |
with st.expander( | |
f"Detailed Results - {model_name}" | |
): | |
col1, col2 = st.columns(2) | |
with col1: | |
st.write( | |
f"**Prediction**: {result['predicted_class']}" | |
) | |
st.write( | |
f"**Confidence**: {result['confidence']:.4f}" | |
) | |
st.write( | |
f"**Processing Time**: {result['processing_time']:.4f}s" | |
) | |
# ROBUST CHECK FOR PROBABILITIES | |
if ( | |
"probs" in result | |
and result["probs"] is not None | |
and len(result["probs"]) > 0 | |
): | |
st.write("**Class Probabilities**:") | |
class_names = [ | |
"Stable", | |
"Weathered", | |
] | |
for i, prob in enumerate( | |
result["probs"] | |
): | |
if i < len(class_names): | |
st.write( | |
f" - {class_names[i]}: {prob:.4f}" | |
) | |
with col2: | |
# ROBUST CHECK FOR LOGITS | |
if ( | |
"logits" in result | |
and result["logits"] is not None | |
and len(result["logits"]) > 0 | |
): | |
st.write("**Raw Logits**:") | |
for i, logit in enumerate( | |
result["logits"] | |
): | |
st.write( | |
f" - Class {i}: {logit:.4f}" | |
) | |
# Export options | |
st.markdown("##### Export Results") | |
export_col1, export_col2 = st.columns(2) | |
with export_col1: | |
if st.button("π Copy Results to Clipboard"): | |
results_text = df.to_string(index=False) | |
st.code(results_text) | |
with export_col2: | |
# Download results as CSV | |
csv_data = df.to_csv(index=False) | |
st.download_button( | |
label="πΎ Download as CSV", | |
data=csv_data, | |
file_name=f"model_comparison_{filename}_{time.strftime('%Y%m%d_%H%M%S')}.csv", | |
mime="text/csv", | |
) | |
except Exception as e: | |
import traceback | |
st.error(f"Error during comparison: {str(e)}") | |
st.code(traceback.format_exc()) # Add traceback for debugging | |
# Show recent comparison results if available | |
elif "last_comparison_results" in st.session_state: | |
st.info( | |
"Previous comparison results available. Upload a new file or select a sample to run new comparison." | |
) | |
# Show comparison history | |
comparison_stats = ResultsManager.get_comparison_stats() | |
if comparison_stats: | |
st.markdown("#### Comparison History") | |
with st.expander("View detailed comparison statistics", expanded=False): | |
# Show model statistics table | |
stats_data = [] | |
for model_name, stats in comparison_stats.items(): | |
row = { | |
"Model": model_name, | |
"Total Predictions": stats["total_predictions"], | |
"Avg Confidence": f"{stats['avg_confidence']:.3f}", | |
"Avg Processing Time": f"{stats['avg_processing_time']:.3f}s", | |
"Accuracy": ( | |
f"{stats['accuracy']:.3f}" | |
if stats["accuracy"] is not None | |
else "N/A" | |
), | |
} | |
stats_data.append(row) | |
if stats_data: | |
import pandas as pd | |
stats_df = pd.DataFrame(stats_data) | |
st.dataframe(stats_df, use_container_width=True) | |
# Show agreement matrix if multiple models | |
agreement_matrix = ResultsManager.get_agreement_matrix() | |
if not agreement_matrix.empty and len(agreement_matrix) > 1: | |
st.markdown("**Model Agreement Matrix**") | |
st.dataframe(agreement_matrix.round(3), use_container_width=True) | |
# Plot agreement heatmap | |
fig, ax = plt.subplots(figsize=(8, 6)) | |
im = ax.imshow( | |
agreement_matrix.values, cmap="RdYlGn", vmin=0, vmax=1 | |
) | |
# Add text annotations | |
for i in range(len(agreement_matrix)): | |
for j in range(len(agreement_matrix.columns)): | |
text = ax.text( | |
j, | |
i, | |
f"{agreement_matrix.iloc[i, j]:.2f}", | |
ha="center", | |
va="center", | |
color="black", | |
) | |
ax.set_xticks(range(len(agreement_matrix.columns))) | |
ax.set_yticks(range(len(agreement_matrix))) | |
ax.set_xticklabels(agreement_matrix.columns, rotation=45) | |
ax.set_yticklabels(agreement_matrix.index) | |
ax.set_title("Model Agreement Matrix") | |
plt.colorbar(im, ax=ax, label="Agreement Rate") | |
plt.tight_layout() | |
st.pyplot(fig) | |
# Export functionality | |
if "last_comparison_results" in st.session_state: | |
st.markdown("##### Export Results") | |
export_col1, export_col2 = st.columns(2) | |
with export_col1: | |
if st.button("π₯ Export Comparison (JSON)"): | |
import json | |
results = st.session_state["last_comparison_results"] | |
json_str = json.dumps(results, indent=2, default=str) | |
st.download_button( | |
label="Download JSON", | |
data=json_str, | |
file_name=f"comparison_{results['filename'].split('.')[0]}.json", | |
mime="application/json", | |
) | |
with export_col2: | |
if st.button("π Export Full Report"): | |
report = ResultsManager.export_comparison_report() | |
st.download_button( | |
label="Download Full Report", | |
data=report, | |
file_name="model_comparison_report.json", | |
mime="application/json", | |
) | |
from utils.performance_tracker import display_performance_dashboard | |
def render_performance_tab(): | |
"""Render the performance tracking and analysis tab.""" | |
display_performance_dashboard() | |