polymer-aging-ml / modules /transparent_ai.py
devjas1
FEAT(transparent_ai): refine hypothesis generation by removing unused spectral data parameter
68f2a01
"""
Transparent AI Reasoning Engine for POLYMEROS
Provides explainable predictions with uncertainty quantification and hypothesis generation
"""
import numpy as np
import torch
import torch.nn.functional as F
from typing import Dict, List, Any, Tuple, Optional
from dataclasses import dataclass
import warnings
try:
import shap
SHAP_AVAILABLE = True
except ImportError:
SHAP_AVAILABLE = False
warnings.warn("SHAP not available. Install with: pip install shap")
@dataclass
class PredictionExplanation:
"""Comprehensive explanation for a model prediction"""
prediction: int
confidence: float
confidence_level: str
probabilities: np.ndarray
feature_importance: Dict[str, float]
reasoning_chain: List[str]
uncertainty_sources: List[str]
similar_cases: List[Dict[str, Any]]
confidence_intervals: Dict[str, Tuple[float, float]]
@dataclass
class Hypothesis:
"""AI-generated scientific hypothesis"""
statement: str
confidence: float
supporting_evidence: List[str]
testable_predictions: List[str]
suggested_experiments: List[str]
related_literature: List[str]
class UncertaintyEstimator:
"""Bayesian uncertainty estimation for model predictions"""
def __init__(self, model, n_samples: int = 100):
self.model = model
self.n_samples = n_samples
self.epistemic_uncertainty = None
self.aleatoric_uncertainty = None
def estimate_uncertainty(self, x: torch.Tensor) -> Dict[str, float]:
"""Estimate prediction uncertainty using Monte Carlo dropout"""
self.model.train() # Enable dropout
predictions = []
with torch.no_grad():
for _ in range(self.n_samples):
pred = F.softmax(self.model(x), dim=1)
predictions.append(pred.cpu().numpy())
predictions = np.array(predictions)
# Calculate uncertainties
mean_pred = np.mean(predictions, axis=0)
epistemic = np.var(predictions, axis=0) # Model uncertainty
aleatoric = np.mean(predictions * (1 - predictions), axis=0) # Data uncertainty
total_uncertainty = epistemic + aleatoric
return {
"epistemic": float(np.mean(epistemic)),
"aleatoric": float(np.mean(aleatoric)),
"total": float(np.mean(total_uncertainty)),
"prediction_variance": float(np.var(mean_pred)),
}
def confidence_intervals(
self, x: torch.Tensor, confidence_level: float = 0.95
) -> Dict[str, Tuple[float, float]]:
"""Calculate confidence intervals for predictions"""
self.model.train()
predictions = []
with torch.no_grad():
for _ in range(self.n_samples):
pred = F.softmax(self.model(x), dim=1)
predictions.append(pred.cpu().numpy().flatten())
predictions = np.array(predictions)
alpha = 1 - confidence_level
lower_percentile = (alpha / 2) * 100
upper_percentile = (1 - alpha / 2) * 100
intervals = {}
for i in range(predictions.shape[1]):
lower = np.percentile(predictions[:, i], lower_percentile)
upper = np.percentile(predictions[:, i], upper_percentile)
intervals[f"class_{i}"] = (lower, upper)
return intervals
class FeatureImportanceAnalyzer:
"""Advanced feature importance analysis for spectral data"""
def __init__(self, model):
self.model = model
self.shap_explainer = None
if SHAP_AVAILABLE:
try:
# Initialize SHAP explainer for the model
if SHAP_AVAILABLE:
if SHAP_AVAILABLE:
self.shap_explainer = shap.DeepExplainer( # type: ignore
model, torch.zeros(1, 500)
)
else:
self.shap_explainer = None
else:
self.shap_explainer = None
except (ValueError, RuntimeError) as e:
warnings.warn(f"Could not initialize SHAP explainer: {e}")
def analyze_feature_importance(
self, x: torch.Tensor, wavenumbers: Optional[np.ndarray] = None
) -> Dict[str, Any]:
"""Comprehensive feature importance analysis"""
importance_data = {}
# SHAP analysis (if available)
if self.shap_explainer is not None:
try:
shap_values = self.shap_explainer.shap_values(x)
importance_data["shap_values"] = shap_values
importance_data["shap_available"] = True
except (ValueError, RuntimeError) as e:
warnings.warn(f"SHAP analysis failed: {e}")
importance_data["shap_available"] = False
else:
importance_data["shap_available"] = False
# Gradient-based importance
x.requires_grad_(True)
self.model.eval()
output = self.model(x)
predicted_class = torch.argmax(output, dim=1)
# Calculate gradients
self.model.zero_grad()
output[0, predicted_class].backward()
if x.grad is not None:
gradients = x.grad.detach().abs().cpu().numpy().flatten()
else:
raise RuntimeError(
"Gradients were not computed. Ensure x.requires_grad_(True) is set correctly."
)
importance_data["gradient_importance"] = gradients
# Integrated gradients approximation
integrated_grads = self._integrated_gradients(x, predicted_class)
importance_data["integrated_gradients"] = integrated_grads
# Spectral region importance
if wavenumbers is not None:
region_importance = self._analyze_spectral_regions(gradients, wavenumbers)
importance_data["spectral_regions"] = region_importance
return importance_data
def _integrated_gradients(
self, x: torch.Tensor, target_class: torch.Tensor, steps: int = 50
) -> np.ndarray:
"""Calculate integrated gradients for feature importance"""
baseline = torch.zeros_like(x)
integrated_grads = np.zeros(x.shape[1])
for i in range(steps):
alpha = i / steps
interpolated = baseline + alpha * (x - baseline)
interpolated.requires_grad_(True)
output = self.model(interpolated)
self.model.zero_grad()
output[0, target_class].backward(retain_graph=True)
if interpolated.grad is not None:
grads = interpolated.grad.cpu().numpy().flatten()
integrated_grads += grads
integrated_grads = (
integrated_grads * (x - baseline).detach().cpu().numpy().flatten() / steps
)
return integrated_grads
def _analyze_spectral_regions(
self, importance: np.ndarray, wavenumbers: np.ndarray
) -> Dict[str, float]:
"""Analyze importance by common spectral regions"""
regions = {
"fingerprint": (400, 1500),
"ch_stretch": (2800, 3100),
"oh_stretch": (3200, 3700),
"carbonyl": (1600, 1800),
"aromatic": (1450, 1650),
}
region_importance = {}
for region_name, (low, high) in regions.items():
mask = (wavenumbers >= low) & (wavenumbers <= high)
if np.any(mask):
region_importance[region_name] = float(np.mean(importance[mask]))
else:
region_importance[region_name] = 0.0
return region_importance
class HypothesisGenerator:
"""AI-driven scientific hypothesis generation"""
def __init__(self):
self.hypothesis_templates = [
"The spectral differences in the {region} region suggest {mechanism} as a primary degradation pathway",
"Enhanced intensity at {wavenumber} cm⁻¹ indicates {chemical_change} in weathered samples",
"The correlation between {feature1} and {feature2} suggests {relationship}",
"Baseline shifts in {region} region may indicate {structural_change}",
]
def generate_hypotheses(
self, explanation: PredictionExplanation
) -> List[Hypothesis]:
"""Generate testable hypotheses based on model predictions and explanations"""
hypotheses = []
# Analyze feature importance for hypothesis generation
important_features = self._identify_key_features(explanation.feature_importance)
for feature_info in important_features:
hypothesis = self._generate_single_hypothesis(feature_info, explanation)
if hypothesis:
hypotheses.append(hypothesis)
return hypotheses
def _identify_key_features(
self, feature_importance: Dict[str, float]
) -> List[Dict[str, Any]]:
"""Identify key features for hypothesis generation"""
# Sort features by importance
sorted_features = sorted(
feature_importance.items(), key=lambda x: abs(x[1]), reverse=True
)
key_features = []
for feature_name, importance in sorted_features[:5]: # Top 5 features
feature_info = {
"name": feature_name,
"importance": importance,
"type": self._classify_feature_type(feature_name),
"chemical_significance": self._get_chemical_significance(feature_name),
}
key_features.append(feature_info)
return key_features
def _classify_feature_type(self, feature_name: str) -> str:
"""Classify spectral feature type"""
if "fingerprint" in feature_name.lower():
return "fingerprint"
elif "stretch" in feature_name.lower():
return "vibrational"
elif "carbonyl" in feature_name.lower():
return "functional_group"
else:
return "general"
def _get_chemical_significance(self, feature_name: str) -> str:
"""Get chemical significance of spectral feature"""
significance_map = {
"fingerprint": "molecular backbone structure",
"ch_stretch": "aliphatic chain integrity",
"oh_stretch": "hydrogen bonding and hydration",
"carbonyl": "oxidative degradation products",
"aromatic": "aromatic ring preservation",
}
for key, significance in significance_map.items():
if key in feature_name.lower():
return significance
return "structural changes"
def _generate_single_hypothesis(
self, feature_info: Dict[str, Any], explanation: PredictionExplanation
) -> Optional[Hypothesis]:
"""Generate a single hypothesis from feature information"""
if feature_info["importance"] < 0.1: # Skip low-importance features
return None
# Create hypothesis statement
statement = f"Changes in {feature_info['name']} region indicate {feature_info['chemical_significance']} during polymer weathering"
# Generate supporting evidence
evidence = [
f"Feature importance score: {feature_info['importance']:.3f}",
f"Classification confidence: {explanation.confidence:.3f}",
f"Chemical significance: {feature_info['chemical_significance']}",
]
# Generate testable predictions
predictions = [
f"Controlled weathering experiments should show progressive changes in {feature_info['name']} region",
f"Different polymer types should exhibit varying {feature_info['name']} responses to weathering",
]
# Suggest experiments
experiments = [
f"Time-series weathering study monitoring {feature_info['name']} region",
f"Comparative analysis across polymer types focusing on {feature_info['chemical_significance']}",
"Cross-validation with other analytical techniques (DSC, GPC, etc.)",
]
return Hypothesis(
statement=statement,
confidence=min(0.9, feature_info["importance"] * explanation.confidence),
supporting_evidence=evidence,
testable_predictions=predictions,
suggested_experiments=experiments,
related_literature=[], # Could be populated with literature search
)
class TransparentAIEngine:
"""Main transparent AI engine combining all reasoning components"""
def __init__(self, model):
self.model = model
self.uncertainty_estimator = UncertaintyEstimator(model)
self.feature_analyzer = FeatureImportanceAnalyzer(model)
self.hypothesis_generator = HypothesisGenerator()
def predict_with_explanation(
self, x: torch.Tensor, wavenumbers: Optional[np.ndarray] = None
) -> PredictionExplanation:
"""Generate comprehensive prediction with full explanation"""
self.model.eval()
# Get basic prediction
with torch.no_grad():
logits = self.model(x)
probabilities = F.softmax(logits, dim=1).cpu().numpy().flatten()
prediction = int(torch.argmax(logits, dim=1).item())
confidence = float(np.max(probabilities))
# Determine confidence level
if confidence >= 0.80:
confidence_level = "HIGH"
elif confidence >= 0.60:
confidence_level = "MEDIUM"
else:
confidence_level = "LOW"
# Get uncertainty estimation
uncertainties = self.uncertainty_estimator.estimate_uncertainty(x)
confidence_intervals = self.uncertainty_estimator.confidence_intervals(x)
# Analyze feature importance
importance_data = self.feature_analyzer.analyze_feature_importance(
x, wavenumbers
)
# Create feature importance dictionary
if wavenumbers is not None and "spectral_regions" in importance_data:
feature_importance = importance_data["spectral_regions"]
else:
# Use gradient importance
gradients = importance_data.get("gradient_importance", [])
feature_importance = {
f"feature_{i}": float(val) for i, val in enumerate(gradients[:10])
}
# Generate reasoning chain
reasoning_chain = self._generate_reasoning_chain(
prediction, confidence, feature_importance, uncertainties
)
# Identify uncertainty sources
uncertainty_sources = self._identify_uncertainty_sources(uncertainties)
# Create explanation object
explanation = PredictionExplanation(
prediction=prediction,
confidence=confidence,
confidence_level=confidence_level,
probabilities=probabilities,
feature_importance=feature_importance,
reasoning_chain=reasoning_chain,
uncertainty_sources=uncertainty_sources,
similar_cases=[], # Could be populated with case-based reasoning
confidence_intervals=confidence_intervals,
)
return explanation
def generate_hypotheses(
self, explanation: PredictionExplanation
) -> List[Hypothesis]:
"""Generate scientific hypotheses based on prediction explanation"""
return self.hypothesis_generator.generate_hypotheses(explanation)
def _generate_reasoning_chain(
self,
prediction: int,
confidence: float,
feature_importance: Dict[str, float],
uncertainties: Dict[str, float],
) -> List[str]:
"""Generate human-readable reasoning chain"""
reasoning = []
# Start with prediction
class_names = ["Stable", "Weathered"]
reasoning.append(
f"Model predicts: {class_names[prediction]} (confidence: {confidence:.3f})"
)
# Add feature analysis
top_features = sorted(
feature_importance.items(), key=lambda x: abs(x[1]), reverse=True
)[:3]
for feature, importance in top_features:
reasoning.append(
f"Key evidence: {feature} region shows importance score {importance:.3f}"
)
# Add uncertainty analysis
total_uncertainty = uncertainties.get("total", 0)
if total_uncertainty > 0.1:
reasoning.append(
f"High uncertainty detected ({total_uncertainty:.3f}) - suggests ambiguous case"
)
# Add confidence assessment
if confidence > 0.8:
reasoning.append(
"High confidence: Strong spectral signature for classification"
)
elif confidence > 0.6:
reasoning.append("Medium confidence: Some ambiguity in spectral features")
else:
reasoning.append("Low confidence: Weak or conflicting spectral evidence")
return reasoning
def _identify_uncertainty_sources(
self, uncertainties: Dict[str, float]
) -> List[str]:
"""Identify sources of prediction uncertainty"""
sources = []
epistemic = uncertainties.get("epistemic", 0)
aleatoric = uncertainties.get("aleatoric", 0)
if epistemic > 0.05:
sources.append(
"Model uncertainty: Limited training data for this type of spectrum"
)
if aleatoric > 0.05:
sources.append("Data uncertainty: Noisy or degraded spectral quality")
if uncertainties.get("prediction_variance", 0) > 0.1:
sources.append("Prediction instability: Multiple possible interpretations")
if not sources:
sources.append("Low uncertainty: Clear and unambiguous classification")
return sources