polymer-aging-ml / modules /modern_ml_architecture.py
devjas1
FEAT(modern_ml_architecture): implement comprehensive transformer-based architecture for polymer analysis with multi-task learning and uncertainty estimation
8dd961f
"""
Modern ML Architecture for POLYMEROS
Implements transformer-based models, multi-task learning, and ensemble methods
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader
import numpy as np
import pandas as pd
from typing import Dict, List, Tuple, Optional, Union, Any
from dataclasses import dataclass
from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor
from sklearn.metrics import accuracy_score, mean_squared_error
import xgboost as xgb
from scipy import stats
import warnings
import json
from pathlib import Path
@dataclass
class ModelPrediction:
"""Structured prediction output with uncertainty quantification"""
prediction: Union[int, float, np.ndarray]
confidence: float
uncertainty_epistemic: float # Model uncertainty
uncertainty_aleatoric: float # Data uncertainty
class_probabilities: Optional[np.ndarray] = None
feature_importance: Optional[Dict[str, float]] = None
explanation: Optional[str] = None
@dataclass
class MultiTaskTarget:
"""Multi-task learning targets"""
classification_target: Optional[int] = None # Polymer type classification
degradation_level: Optional[float] = None # Continuous degradation score
property_predictions: Optional[Dict[str, float]] = None # Material properties
aging_rate: Optional[float] = None # Rate of aging prediction
class SpectralTransformerBlock(nn.Module):
"""Transformer block optimized for spectral data"""
def __init__(self, d_model: int, num_heads: int, d_ff: int, dropout: float = 0.1):
super().__init__()
self.d_model = d_model
self.num_heads = num_heads
# Multi-head attention
self.attention = nn.MultiheadAttention(
d_model, num_heads, dropout=dropout, batch_first=True
)
# Feed-forward network
self.ff_network = nn.Sequential(
nn.Linear(d_model, d_ff),
nn.ReLU(),
nn.Dropout(dropout),
nn.Linear(d_ff, d_model),
)
# Layer normalization
self.ln1 = nn.LayerNorm(d_model)
self.ln2 = nn.LayerNorm(d_model)
# Dropout
self.dropout = nn.Dropout(dropout)
def forward(
self, x: torch.Tensor, mask: Optional[torch.Tensor] = None
) -> torch.Tensor:
# Self-attention with residual connection
attn_output, attention_weights = self.attention(x, x, x, attn_mask=mask)
x = self.ln1(x + self.dropout(attn_output))
# Feed-forward with residual connection
ff_output = self.ff_network(x)
x = self.ln2(x + self.dropout(ff_output))
return x
class SpectralPositionalEncoding(nn.Module):
"""Positional encoding adapted for spectral wavenumber information"""
def __init__(self, d_model: int, max_seq_length: int = 2000):
super().__init__()
self.d_model = d_model
# Create positional encoding matrix
pe = torch.zeros(max_seq_length, d_model)
position = torch.arange(0, max_seq_length, dtype=torch.float).unsqueeze(1)
# Use different frequencies for different dimensions
div_term = torch.exp(
torch.arange(0, d_model, 2).float() * (-np.log(10000.0) / d_model)
)
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
self.register_buffer("pe", pe.unsqueeze(0))
def forward(self, x: torch.Tensor) -> torch.Tensor:
seq_len = x.size(1)
return x + self.pe[:, :seq_len, :].to(x.device)
class SpectralTransformer(nn.Module):
"""Transformer architecture optimized for spectral analysis"""
def __init__(
self,
input_dim: int = 1,
d_model: int = 256,
num_heads: int = 8,
num_layers: int = 6,
d_ff: int = 1024,
max_seq_length: int = 2000,
num_classes: int = 2,
dropout: float = 0.1,
):
super().__init__()
self.d_model = d_model
self.num_classes = num_classes
# Input projection
self.input_projection = nn.Linear(input_dim, d_model)
# Positional encoding
self.pos_encoding = SpectralPositionalEncoding(d_model, max_seq_length)
# Transformer layers
self.transformer_layers = nn.ModuleList(
[
SpectralTransformerBlock(d_model, num_heads, d_ff, dropout)
for _ in range(num_layers)
]
)
# Classification head
self.classification_head = nn.Sequential(
nn.Linear(d_model, d_model // 2),
nn.ReLU(),
nn.Dropout(dropout),
nn.Linear(d_model // 2, num_classes),
)
# Regression heads for multi-task learning
self.degradation_head = nn.Sequential(
nn.Linear(d_model, d_model // 2),
nn.ReLU(),
nn.Dropout(dropout),
nn.Linear(d_model // 2, 1),
)
self.property_head = nn.Sequential(
nn.Linear(d_model, d_model // 2),
nn.ReLU(),
nn.Dropout(dropout),
nn.Linear(d_model // 2, 5), # Predict 5 material properties
)
# Uncertainty estimation layers
self.uncertainty_head = nn.Sequential(
nn.Linear(d_model, d_model // 4),
nn.ReLU(),
nn.Linear(d_model // 4, 2), # Epistemic and aleatoric uncertainty
)
# Attention pooling for sequence aggregation
self.attention_pool = nn.MultiheadAttention(d_model, 1, batch_first=True)
self.pool_query = nn.Parameter(torch.randn(1, 1, d_model))
self.dropout = nn.Dropout(dropout)
def forward(
self, x: torch.Tensor, return_attention: bool = False
) -> Dict[str, torch.Tensor]:
batch_size, seq_len, input_dim = x.shape
# Input projection and positional encoding
x = self.input_projection(x) # (batch, seq_len, d_model)
x = self.pos_encoding(x)
x = self.dropout(x)
# Store attention weights if requested
attention_weights = []
# Pass through transformer layers
for layer in self.transformer_layers:
x = layer(x)
# Attention pooling to get sequence representation
query = self.pool_query.expand(batch_size, -1, -1)
pooled_output, pool_attention = self.attention_pool(query, x, x)
pooled_output = pooled_output.squeeze(1) # (batch, d_model)
if return_attention:
attention_weights.append(pool_attention)
# Multi-task outputs
outputs = {}
# Classification output
classification_logits = self.classification_head(pooled_output)
outputs["classification_logits"] = classification_logits
outputs["classification_probs"] = F.softmax(classification_logits, dim=-1)
# Degradation prediction
degradation_pred = self.degradation_head(pooled_output)
outputs["degradation_prediction"] = degradation_pred
# Property predictions
property_pred = self.property_head(pooled_output)
outputs["property_predictions"] = property_pred
# Uncertainty estimation
uncertainty_pred = self.uncertainty_head(pooled_output)
outputs["uncertainty_epistemic"] = torch.nn.Softplus()(uncertainty_pred[:, 0])
outputs["uncertainty_aleatoric"] = F.softplus(uncertainty_pred[:, 1])
if return_attention:
outputs["attention_weights"] = attention_weights
return outputs
class BayesianUncertaintyEstimator:
"""Bayesian uncertainty quantification using Monte Carlo dropout"""
def __init__(self, model: nn.Module, num_samples: int = 100):
self.model = model
self.num_samples = num_samples
def enable_dropout(self, model: nn.Module):
"""Enable dropout for uncertainty estimation"""
for module in model.modules():
if isinstance(module, nn.Dropout):
module.train()
def predict_with_uncertainty(self, x: torch.Tensor) -> Dict[str, torch.Tensor]:
"""
Predict with uncertainty quantification using Monte Carlo dropout
Args:
x: Input tensor
Returns:
Predictions with uncertainty estimates
"""
self.model.eval()
self.enable_dropout(self.model)
predictions = []
classification_probs = []
degradation_preds = []
uncertainty_estimates = []
with torch.no_grad():
for _ in range(self.num_samples):
output = self.model(x)
predictions.append(output["classification_probs"])
classification_probs.append(output["classification_probs"])
degradation_preds.append(output["degradation_prediction"])
uncertainty_estimates.append(
torch.stack(
[
output["uncertainty_epistemic"],
output["uncertainty_aleatoric"],
],
dim=1,
)
)
# Stack predictions
classification_stack = torch.stack(
classification_probs, dim=0
) # (num_samples, batch, classes)
degradation_stack = torch.stack(degradation_preds, dim=0)
uncertainty_stack = torch.stack(uncertainty_estimates, dim=0)
# Calculate statistics
mean_classification = classification_stack.mean(dim=0)
std_classification = classification_stack.std(dim=0)
mean_degradation = degradation_stack.mean(dim=0)
std_degradation = degradation_stack.std(dim=0)
mean_uncertainty = uncertainty_stack.mean(dim=0)
# Calculate epistemic uncertainty (model uncertainty)
epistemic_uncertainty = std_classification.mean(dim=1)
# Calculate aleatoric uncertainty (data uncertainty)
aleatoric_uncertainty = mean_uncertainty[:, 1]
return {
"mean_classification": mean_classification,
"std_classification": std_classification,
"mean_degradation": mean_degradation,
"std_degradation": std_degradation,
"epistemic_uncertainty": epistemic_uncertainty,
"aleatoric_uncertainty": aleatoric_uncertainty,
"total_uncertainty": epistemic_uncertainty + aleatoric_uncertainty,
}
class EnsembleModel:
"""Ensemble model combining multiple approaches"""
def __init__(self):
self.models = {}
self.weights = {}
self.is_fitted = False
def add_transformer_model(self, model: SpectralTransformer, weight: float = 1.0):
"""Add transformer model to ensemble"""
self.models["transformer"] = model
self.weights["transformer"] = weight
def add_random_forest(self, n_estimators: int = 100, weight: float = 1.0):
"""Add Random Forest to ensemble"""
self.models["random_forest_clf"] = RandomForestClassifier(
n_estimators=n_estimators, random_state=42, oob_score=True
)
self.models["random_forest_reg"] = RandomForestRegressor(
n_estimators=n_estimators, random_state=42, oob_score=True
)
self.weights["random_forest"] = weight
def add_xgboost(self, weight: float = 1.0):
"""Add XGBoost to ensemble"""
self.models["xgboost_clf"] = xgb.XGBClassifier(
n_estimators=100, random_state=42, eval_metric="logloss"
)
self.models["xgboost_reg"] = xgb.XGBRegressor(n_estimators=100, random_state=42)
self.weights["xgboost"] = weight
def fit(
self,
X: np.ndarray,
y_classification: np.ndarray,
y_degradation: Optional[np.ndarray] = None,
):
"""
Fit ensemble models
Args:
X: Input features (flattened spectra for traditional ML models)
y_classification: Classification targets
y_degradation: Degradation targets (optional)
"""
# Fit Random Forest
if "random_forest_clf" in self.models:
self.models["random_forest_clf"].fit(X, y_classification)
if y_degradation is not None:
self.models["random_forest_reg"].fit(X, y_degradation)
# Fit XGBoost
if "xgboost_clf" in self.models:
self.models["xgboost_clf"].fit(X, y_classification)
if y_degradation is not None:
self.models["xgboost_reg"].fit(X, y_degradation)
self.is_fitted = True
def predict(
self, X: np.ndarray, X_transformer: Optional[torch.Tensor] = None
) -> ModelPrediction:
"""
Ensemble prediction with uncertainty quantification
Args:
X: Input features for traditional ML models
X_transformer: Input tensor for transformer model
Returns:
Ensemble prediction with uncertainty
"""
if not self.is_fitted and "transformer" not in self.models:
raise ValueError(
"Ensemble must be fitted or contain pre-trained transformer"
)
predictions = {}
classification_probs = []
degradation_preds = []
model_weights = []
# Random Forest predictions
if (
"random_forest_clf" in self.models
and self.models["random_forest_clf"] is not None
):
rf_probs = self.models["random_forest_clf"].predict_proba(X)
classification_probs.append(rf_probs)
model_weights.append(self.weights["random_forest"])
if "random_forest_reg" in self.models:
rf_degradation = self.models["random_forest_reg"].predict(X)
degradation_preds.append(rf_degradation)
# XGBoost predictions
if "xgboost_clf" in self.models and self.models["xgboost_clf"] is not None:
xgb_probs = self.models["xgboost_clf"].predict_proba(X)
classification_probs.append(xgb_probs)
model_weights.append(self.weights["xgboost"])
if "xgboost_reg" in self.models:
xgb_degradation = self.models["xgboost_reg"].predict(X)
degradation_preds.append(xgb_degradation)
# Transformer predictions
if "transformer" in self.models and X_transformer is not None:
transformer_output = self.models["transformer"](X_transformer)
transformer_probs = (
transformer_output["classification_probs"].detach().numpy()
)
classification_probs.append(transformer_probs)
model_weights.append(self.weights["transformer"])
transformer_degradation = (
transformer_output["degradation_prediction"].detach().numpy()
)
degradation_preds.append(transformer_degradation.flatten())
# Weighted ensemble
if classification_probs:
model_weights = np.array(model_weights)
model_weights = model_weights / np.sum(model_weights) # Normalize
# Weighted average of probabilities
ensemble_probs = np.zeros_like(classification_probs[0])
for i, probs in enumerate(classification_probs):
ensemble_probs += model_weights[i] * probs
# Predicted class
predicted_class = np.argmax(ensemble_probs, axis=1)[0]
confidence = np.max(ensemble_probs, axis=1)[0]
# Calculate uncertainty from model disagreement
prob_variance = np.var([probs[0] for probs in classification_probs], axis=0)
epistemic_uncertainty = np.mean(prob_variance)
# Aleatoric uncertainty (average across models)
aleatoric_uncertainty = 1.0 - confidence # Simple estimate
# Degradation prediction
ensemble_degradation = None
if degradation_preds:
ensemble_degradation = np.average(
degradation_preds, weights=model_weights, axis=0
)[0]
else:
raise ValueError("No valid predictions could be made")
# Feature importance (from Random Forest if available)
feature_importance = None
if (
"random_forest_clf" in self.models
and self.models["random_forest_clf"] is not None
):
importance = self.models["random_forest_clf"].feature_importances_
# Convert to wavenumber-based importance (assuming spectral input)
feature_importance = {
f"wavenumber_{i}": float(importance[i]) for i in range(len(importance))
}
return ModelPrediction(
prediction=predicted_class,
confidence=confidence,
uncertainty_epistemic=epistemic_uncertainty,
uncertainty_aleatoric=aleatoric_uncertainty,
class_probabilities=ensemble_probs[0],
feature_importance=feature_importance,
explanation=self._generate_explanation(
predicted_class, confidence, ensemble_degradation
),
)
def _generate_explanation(
self,
predicted_class: int,
confidence: float,
degradation: Optional[float] = None,
) -> str:
"""Generate human-readable explanation"""
class_names = {0: "Stable (Unweathered)", 1: "Weathered"}
class_name = class_names.get(predicted_class, f"Class {predicted_class}")
explanation = f"Predicted class: {class_name} (confidence: {confidence:.3f})"
if degradation is not None:
explanation += f"\nEstimated degradation level: {degradation:.3f}"
if confidence > 0.8:
explanation += "\nHigh confidence prediction - strong spectral evidence"
elif confidence > 0.6:
explanation += "\nModerate confidence - some uncertainty in classification"
else:
explanation += "\nLow confidence - significant uncertainty, consider additional analysis"
return explanation
class MultiTaskLearningFramework:
"""Framework for multi-task learning in polymer analysis"""
def __init__(self, model: SpectralTransformer):
self.model = model
self.task_weights = {
"classification": 1.0,
"degradation": 0.5,
"properties": 0.3,
}
self.optimizer = None
self.scheduler = None
def setup_training(self, learning_rate: float = 1e-4):
"""Setup optimizer and scheduler"""
self.optimizer = torch.optim.AdamW(
self.model.parameters(), lr=learning_rate, weight_decay=0.01
)
self.scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
self.optimizer, T_max=100
)
def compute_loss(
self,
outputs: Dict[str, torch.Tensor],
targets: MultiTaskTarget,
batch_size: int,
) -> Dict[str, torch.Tensor]:
"""
Compute multi-task loss
Args:
outputs: Model outputs
targets: Multi-task targets
batch_size: Batch size
Returns:
Loss components
"""
losses = {}
total_loss = 0
# Classification loss
if targets.classification_target is not None:
classification_loss = F.cross_entropy(
outputs["classification_logits"],
torch.tensor(
[targets.classification_target] * batch_size, dtype=torch.long
),
)
losses["classification"] = classification_loss
total_loss += self.task_weights["classification"] * classification_loss
# Degradation regression loss
if targets.degradation_level is not None:
degradation_loss = F.mse_loss(
outputs["degradation_prediction"].squeeze(),
torch.tensor(
[targets.degradation_level] * batch_size, dtype=torch.float
),
)
losses["degradation"] = degradation_loss
total_loss += self.task_weights["degradation"] * degradation_loss
# Property prediction loss
if targets.property_predictions is not None:
property_targets = torch.tensor(
[[targets.property_predictions.get(f"prop_{i}", 0.0) for i in range(5)]]
* batch_size,
dtype=torch.float,
)
property_loss = F.mse_loss(
outputs["property_predictions"], property_targets
)
losses["properties"] = property_loss
total_loss += self.task_weights["properties"] * property_loss
# Uncertainty regularization
uncertainty_reg = torch.mean(outputs["uncertainty_epistemic"]) + torch.mean(
outputs["uncertainty_aleatoric"]
)
losses["uncertainty_reg"] = uncertainty_reg
total_loss += 0.01 * uncertainty_reg # Small weight for regularization
losses["total"] = total_loss
return losses
def train_step(self, x: torch.Tensor, targets: MultiTaskTarget) -> Dict[str, float]:
"""Single training step"""
self.model.train()
if self.optimizer is None:
raise ValueError(
"Optimizer is not initialized. Call setup_training() to initialize it."
)
self.optimizer.zero_grad()
outputs = self.model(x)
losses = self.compute_loss(outputs, targets, x.size(0))
losses["total"].backward()
torch.nn.utils.clip_grad_norm_(self.model.parameters(), max_norm=1.0)
if self.optimizer is None:
raise ValueError(
"Optimizer is not initialized. Call setup_training() to initialize it."
)
self.optimizer.step()
return {
k: float(v.item()) if torch.is_tensor(v) else float(v)
for k, v in losses.items()
}
class ModernMLPipeline:
"""Complete modern ML pipeline for polymer analysis"""
def __init__(self, config: Optional[Dict] = None):
self.config = config or self._default_config()
self.transformer_model = None
self.ensemble_model = None
self.uncertainty_estimator = None
self.multi_task_framework = None
def _default_config(self) -> Dict:
"""Default configuration"""
return {
"transformer": {
"d_model": 256,
"num_heads": 8,
"num_layers": 6,
"d_ff": 1024,
"dropout": 0.1,
"num_classes": 2,
},
"ensemble": {
"transformer_weight": 0.4,
"random_forest_weight": 0.3,
"xgboost_weight": 0.3,
},
"uncertainty": {"num_mc_samples": 50},
"training": {"learning_rate": 1e-4, "batch_size": 32, "num_epochs": 100},
}
def initialize_models(self, input_dim: int = 1, max_seq_length: int = 2000):
"""Initialize all models"""
# Transformer model
self.transformer_model = SpectralTransformer(
input_dim=input_dim,
d_model=self.config["transformer"]["d_model"],
num_heads=self.config["transformer"]["num_heads"],
num_layers=self.config["transformer"]["num_layers"],
d_ff=self.config["transformer"]["d_ff"],
max_seq_length=max_seq_length,
num_classes=self.config["transformer"]["num_classes"],
dropout=self.config["transformer"]["dropout"],
)
# Uncertainty estimator
self.uncertainty_estimator = BayesianUncertaintyEstimator(
self.transformer_model,
num_samples=self.config["uncertainty"]["num_mc_samples"],
)
# Multi-task framework
self.multi_task_framework = MultiTaskLearningFramework(self.transformer_model)
# Ensemble model
self.ensemble_model = EnsembleModel()
self.ensemble_model.add_transformer_model(
self.transformer_model, self.config["ensemble"]["transformer_weight"]
)
self.ensemble_model.add_random_forest(
weight=self.config["ensemble"]["random_forest_weight"]
)
self.ensemble_model.add_xgboost(
weight=self.config["ensemble"]["xgboost_weight"]
)
def train_ensemble(
self,
X_flat: np.ndarray,
X_transformer: torch.Tensor,
y_classification: np.ndarray,
y_degradation: Optional[np.ndarray] = None,
):
"""Train the ensemble model"""
if self.ensemble_model is None:
raise ValueError("Models not initialized. Call initialize_models() first.")
# Train traditional ML models
self.ensemble_model.fit(X_flat, y_classification, y_degradation)
# Setup transformer training
if self.multi_task_framework is None:
raise ValueError(
"Multi-task framework is not initialized. Call initialize_models() first."
)
self.multi_task_framework.setup_training(
self.config["training"]["learning_rate"]
)
print(
"Ensemble training completed (transformer training would require full training loop)"
)
def predict_with_all_methods(
self, X_flat: np.ndarray, X_transformer: torch.Tensor
) -> Dict[str, Any]:
"""
Comprehensive prediction using all methods
Args:
X_flat: Flattened spectral data for traditional ML
X_transformer: Tensor format for transformer
Returns:
Complete prediction results
"""
results = {}
# Ensemble prediction
if self.ensemble_model is None:
raise ValueError(
"Ensemble model is not initialized. Call initialize_models() first."
)
ensemble_pred = self.ensemble_model.predict(X_flat, X_transformer)
results["ensemble"] = ensemble_pred
# Transformer with uncertainty
if self.transformer_model is not None:
if self.uncertainty_estimator is None:
raise ValueError(
"Uncertainty estimator is not initialized. Call initialize_models() first."
)
uncertainty_pred = self.uncertainty_estimator.predict_with_uncertainty(
X_transformer
)
results["transformer_uncertainty"] = uncertainty_pred
# Individual model predictions for comparison
individual_predictions = {}
if (
self.ensemble_model is not None
and "random_forest_clf" in self.ensemble_model.models
):
rf_pred = self.ensemble_model.models["random_forest_clf"].predict_proba(
X_flat
)[0]
individual_predictions["random_forest"] = rf_pred
if "xgboost_clf" in self.ensemble_model.models:
xgb_pred = self.ensemble_model.models["xgboost_clf"].predict_proba(X_flat)[
0
]
individual_predictions["xgboost"] = xgb_pred
results["individual_models"] = individual_predictions
return results
def get_model_insights(
self, X_flat: np.ndarray, X_transformer: torch.Tensor
) -> Dict[str, Any]:
"""
Generate insights about model behavior and predictions
Args:
X_flat: Flattened spectral data
X_transformer: Transformer input format
Returns:
Model insights and explanations
"""
insights = {}
# Feature importance from Random Forest
if "random_forest_clf" in self.ensemble_model.models:
if (
self.ensemble_model
and "random_forest_clf" in self.ensemble_model.models
and self.ensemble_model.models["random_forest_clf"] is not None
):
rf_importance = self.ensemble_model.models[
"random_forest_clf"
].feature_importances_
else:
rf_importance = None
if rf_importance is not None:
top_features = np.argsort(rf_importance)[-10:][::-1]
else:
top_features = []
insights["top_spectral_regions"] = {
f"wavenumber_{idx}": float(rf_importance[idx])
for idx in top_features
if rf_importance is not None
}
# Attention weights from transformer
if self.transformer_model is not None:
self.transformer_model.eval()
with torch.no_grad():
outputs = self.transformer_model(X_transformer, return_attention=True)
if "attention_weights" in outputs:
insights["attention_patterns"] = outputs["attention_weights"]
# Uncertainty analysis
predictions = self.predict_with_all_methods(X_flat, X_transformer)
if "transformer_uncertainty" in predictions:
uncertainty_data = predictions["transformer_uncertainty"]
insights["uncertainty_analysis"] = {
"epistemic_uncertainty": float(
uncertainty_data["epistemic_uncertainty"].mean()
),
"aleatoric_uncertainty": float(
uncertainty_data["aleatoric_uncertainty"].mean()
),
"total_uncertainty": float(
uncertainty_data["total_uncertainty"].mean()
),
"confidence_level": (
"high"
if uncertainty_data["total_uncertainty"].mean() < 0.1
else (
"medium"
if uncertainty_data["total_uncertainty"].mean() < 0.3
else "low"
)
),
}
# Model agreement analysis
if "individual_models" in predictions:
individual = predictions["individual_models"]
agreements = []
for model1_name, model1_pred in individual.items():
for model2_name, model2_pred in individual.items():
if model1_name != model2_name:
# Calculate agreement based on prediction similarity
agreement = 1.0 - np.abs(model1_pred - model2_pred).mean()
agreements.append(agreement)
insights["model_agreement"] = {
"average_agreement": float(np.mean(agreements)) if agreements else 0.0,
"agreement_level": (
"high"
if np.mean(agreements) > 0.8
else "medium" if np.mean(agreements) > 0.6 else "low"
),
}
return insights
def save_models(self, save_path: Path):
"""Save trained models"""
save_path = Path(save_path)
save_path.mkdir(parents=True, exist_ok=True)
# Save transformer model
if self.transformer_model is not None:
torch.save(
self.transformer_model.state_dict(), save_path / "transformer_model.pth"
)
# Save configuration
with open(save_path / "config.json", "w") as f:
json.dump(self.config, f, indent=2)
print(f"Models saved to {save_path}")
def load_models(self, load_path: Path):
"""Load pre-trained models"""
load_path = Path(load_path)
# Load configuration
with open(load_path / "config.json", "r") as f:
self.config = json.load(f)
# Initialize and load transformer
self.initialize_models()
if (
self.transformer_model is not None
and (load_path / "transformer_model.pth").exists()
):
self.transformer_model.load_state_dict(
torch.load(load_path / "transformer_model.pth", map_location="cpu")
)
else:
raise ValueError(
"Transformer model is not initialized or model file is missing."
)
print(f"Models loaded from {load_path}")
# Utility functions for data preparation
def prepare_transformer_input(
spectral_data: np.ndarray, max_length: int = 2000
) -> torch.Tensor:
"""
Prepare spectral data for transformer input
Args:
spectral_data: Raw spectral intensities (1D array)
max_length: Maximum sequence length
Returns:
Formatted tensor for transformer
"""
# Ensure proper length
if len(spectral_data) > max_length:
# Downsample
indices = np.linspace(0, len(spectral_data) - 1, max_length, dtype=int)
spectral_data = spectral_data[indices]
elif len(spectral_data) < max_length:
# Pad with zeros
padding = np.zeros(max_length - len(spectral_data))
spectral_data = np.concatenate([spectral_data, padding])
# Reshape for transformer: (batch_size, sequence_length, features)
return torch.tensor(spectral_data, dtype=torch.float32).unsqueeze(0).unsqueeze(-1)
def create_multitask_targets(
classification_label: int,
degradation_score: Optional[float] = None,
material_properties: Optional[Dict[str, float]] = None,
) -> MultiTaskTarget:
"""
Create multi-task learning targets
Args:
classification_label: Classification target (0 or 1)
degradation_score: Continuous degradation score [0, 1]
material_properties: Dictionary of material properties
Returns:
MultiTaskTarget object
"""
return MultiTaskTarget(
classification_target=classification_label,
degradation_level=degradation_score,
property_predictions=material_properties,
)