Spaces:
Sleeping
Sleeping
from models.resnet_cnn import ResNet1D | |
from models.figure2_cnn import Figure2CNN | |
import hashlib | |
import gc | |
import time | |
import io | |
from PIL import Image | |
import matplotlib.pyplot as plt | |
import matplotlib | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
import streamlit as st | |
import os | |
import sys | |
from pathlib import Path | |
# Ensure 'utils' directory is in the Python path | |
utils_path = Path(__file__).resolve().parent / "utils" | |
if utils_path.is_dir() and str(utils_path) not in sys.path: | |
sys.path.append(str(utils_path)) | |
matplotlib.use("Agg") # ensure headless rendering in Spaces | |
# Import local modules | |
from utils.preprocessing import resample_spectrum | |
KEEP_KEYS = { | |
# === global UI context we want to keep after "Reset" === | |
"model_select", # sidebar model key | |
"input_mode", # radio for Upload|Sample | |
"uploader_version", # version counter for file uploader | |
"input_registry", # radio controlling Upload vs Sample | |
} | |
# Configuration | |
st.set_page_config( | |
page_title="ML Polymer Classification", | |
page_icon="🔬", | |
layout="wide", | |
initial_sidebar_state="expanded" | |
) | |
st.markdown(""" | |
<style> | |
/* Keep only scoped utility styles; no .block-container edits */ | |
/* Tabs content area height (your original intent) */ | |
div[data-testid="stTabs"] > div[role="tablist"] + div { min-height: 420px; } | |
/* Compact info box for confidence bar */ | |
.confbox { | |
font-family: ui-monospace, SFMono-Regular, Menlo, Consolas, monospace; | |
font-size: 0.95rem; | |
padding: 8px 10px; border: 1px solid rgba(0,0,0,.07); | |
border-radius: 8px; background: rgba(0,0,0,.02); | |
} | |
/* Clean key–value rows for technical info */ | |
.kv-row { display:flex; justify-content:space-between; | |
border-bottom: 1px dotted rgba(0,0,0,.10); padding: 3px 0; gap: 12px; } | |
.kv-key { opacity:.75; font-size: 0.92rem; white-space: nowrap; } | |
.kv-val { font-family: ui-monospace, SFMono-Regular, Menlo, Consolas, monospace; | |
overflow-wrap: anywhere; } | |
/* Ensure markdown h5 headings remain visible after layout shifts */ | |
:where(h5, .stMarkdown h5) { margin-top: 0.25rem; } | |
/* === Base Expander Header === */ | |
div.stExpander > details > summary { | |
display: flex; | |
align-items: center; | |
justify-content: space-between; | |
list-style: none; /* remove default arrow */ | |
cursor: pointer; | |
border: 1px solid rgba(0,0,0,.15); | |
border-left: 4px solid #9ca3af; /* default gray accent */ | |
border-radius: 6px; | |
padding: 6px 12px; | |
margin: 6px 0; | |
background: rgba(0,0,0,0.04); | |
font-weight: 600; | |
font-size: 0.92rem; | |
} | |
/* Remove ugly default disclosure triangle */ | |
div.stExpander > details > summary::-webkit-details-marker { | |
display: none; | |
} | |
div.stExpander > details > summary::marker { | |
display: none; | |
} | |
/* Hover/active subtlety */ | |
div.stExpander > details[open] > summary { | |
background: rgba(0,0,0,0.06); | |
} | |
/* Hide Streamlit's custom arrow icon inside expanders */ | |
div[data-testid="stExpander"] summary svg { | |
display: none !important; | |
} | |
/* === Right Badge === */ | |
div.stExpander > details > summary::after { | |
content: "MORE ↓"; | |
font-size: 0.70rem; | |
font-weight: 600; | |
letter-spacing: .04em; | |
padding: 2px 8px; | |
border-radius: 999px; | |
margin-left: auto; | |
background: #e5e7eb; | |
color: #111827; | |
} | |
/* === Variants by Keyword === */ | |
div.stExpander:has(summary:contains("Prediction")) > details > summary { | |
border-left-color: #2e7d32; | |
background: rgba(46,125,50,0.08); | |
} | |
div.stExpander:has(summary:contains("Prediction")) > details > summary::after { | |
content: "RESULTS"; | |
background: rgba(46,125,50,0.15); color: #184a1d; | |
} | |
div.stExpander:has(summary:contains("Technical")) > details > summary { | |
border-left-color: #ed6c02; | |
background: rgba(237,108,2,0.08); | |
} | |
div.stExpander:has(summary:contains("Technical")) > details > summary::after { | |
content: "ADVANCED"; | |
background: rgba(237,108,2,0.18); color: #7a3d00; | |
} | |
/* === FONT SIZE STANDARDIZATION === */ | |
/* Sidebar metrics (Accuracy, F1 Score) */ | |
div[data-testid="stMetricValue"] { | |
font-size: 0.95rem !important; /* uniform body size */ | |
} | |
div[data-testid="stMetricLabel"] { | |
font-size: 0.85rem !important; | |
opacity: 0.85; | |
} | |
/* Sidebar expander text */ | |
section[data-testid="stSidebar"] .stMarkdown p { | |
font-size: 0.92rem !important; | |
line-height: 1.4; | |
} | |
/* Diagnostics tab metrics (Logits) */ | |
div[data-testid="stMetricValue"] { | |
font-size: 0.95rem !important; | |
} | |
div[data-testid="stMetricLabel"] { | |
font-size: 0.85rem !important; | |
} | |
</style> | |
""", unsafe_allow_html=True) | |
# Constants | |
TARGET_LEN = 500 | |
SAMPLE_DATA_DIR = Path("sample_data") | |
# Prefer env var, else 'model_weights' if present; else canonical 'outputs' | |
MODEL_WEIGHTS_DIR = ( | |
os.getenv("WEIGHTS_DIR") | |
or ("model_weights" if os.path.isdir("model_weights") else "outputs") | |
) | |
# Model configuration | |
MODEL_CONFIG = { | |
"Figure2CNN (Baseline)": { | |
"class": Figure2CNN, | |
"path": f"{MODEL_WEIGHTS_DIR}/figure2_model.pth", | |
"emoji": "", | |
"description": "Baseline CNN with standard filters", | |
"accuracy": "94.80%", | |
"f1": "94.30%" | |
}, | |
"ResNet1D (Advanced)": { | |
"class": ResNet1D, | |
"path": f"{MODEL_WEIGHTS_DIR}/resnet_model.pth", | |
"emoji": "", | |
"description": "Residual CNN with deeper feature learning", | |
"accuracy": "96.20%", | |
"f1": "95.90%" | |
} | |
} | |
# Label mapping | |
LABEL_MAP = {0: "Stable (Unweathered)", 1: "Weathered (Degraded)"} | |
# === UTILITY FUNCTIONS === | |
def init_session_state(): | |
"""Keep a persistent session state""" | |
defaults = { | |
"status_message": "Ready to analyze polymer spectra 🔬", | |
"status_type": "info", | |
"input_text": None, | |
"filename": None, | |
"input_source": None, # "upload" or "sample" | |
"sample_select": "-- Select Sample --", | |
"input_mode": "Upload File", # controls which pane is visible | |
"inference_run_once": False, | |
"x_raw": None, "y_raw": None, "y_resampled": None, | |
"log_messages": [], | |
"uploader_version": 0, | |
"current_upload_key": "upload_txt_0", | |
} | |
for k, v in defaults.items(): | |
st.session_state.setdefault(k, v) | |
for key, default_value in defaults.items(): | |
if key not in st.session_state: | |
st.session_state[key] = default_value | |
def label_file(filename: str) -> int: | |
"""Extract label from filename based on naming convention""" | |
name = Path(filename).name.lower() | |
if name.startswith("sta"): | |
return 0 | |
elif name.startswith("wea"): | |
return 1 | |
else: | |
# Return None for unknown patterns instead of raising error | |
return -1 # Default value for unknown patterns | |
def load_state_dict(_mtime, model_path): | |
"""Load state dict with mtime in cache key to detect file changes""" | |
try: | |
return torch.load(model_path, map_location="cpu", weights_only=True) | |
except (FileNotFoundError, RuntimeError) as e: | |
st.warning(f"Error loading state dict: {e}") | |
return None | |
def load_model(model_name): | |
"""Load and cache the specified model with error handling""" | |
try: | |
config = MODEL_CONFIG[model_name] | |
model_class = config["class"] | |
model_path = config["path"] | |
# Initialize model | |
model = model_class(input_length=TARGET_LEN) | |
# Check if model file exists | |
if not os.path.exists(model_path): | |
st.warning(f"⚠️ Model weights not found: {model_path}") | |
st.info("Using randomly initialized model for demonstration purposes.") | |
return model, False | |
# Get mtime for cache invalidation | |
mtime = os.path.getmtime(model_path) | |
# Load weights | |
state_dict = load_state_dict(mtime, model_path) | |
if state_dict: | |
model.load_state_dict(state_dict, strict=True) | |
if model is None: | |
raise ValueError( | |
"Model is not loaded. Please check the model configuration or weights.") | |
model.eval() | |
return model, True | |
else: | |
return model, False | |
except (FileNotFoundError, KeyError) as e: | |
st.error(f"❌ Error loading model {model_name}: {str(e)}") | |
return None, False | |
def cleanup_memory(): | |
"""Clean up memory after inference""" | |
gc.collect() | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
def get_sample_files(): | |
"""Get list of sample files if available""" | |
sample_dir = Path(SAMPLE_DATA_DIR) | |
if sample_dir.exists(): | |
return sorted(list(sample_dir.glob("*.txt"))) | |
return [] | |
def parse_spectrum_data(raw_text): | |
"""Parse spectrum data from text with robust error handling and validation""" | |
x_vals, y_vals = [], [] | |
for line in raw_text.splitlines(): | |
line = line.strip() | |
if not line or line.startswith('#'): # Skip empty lines and comments | |
continue | |
try: | |
# Handle different separators | |
parts = line.replace(",", " ").split() | |
numbers = [p for p in parts if p.replace('.', '', 1).replace( | |
'-', '', 1).replace('+', '', 1).isdigit()] | |
if len(numbers) >= 2: | |
x, y = float(numbers[0]), float(numbers[1]) | |
x_vals.append(x) | |
y_vals.append(y) | |
except ValueError: | |
# Skip problematic lines but don't fail completely | |
continue | |
if len(x_vals) < 10: # Minimum reasonable spectrum length | |
raise ValueError( | |
f"Insufficient data points: {len(x_vals)}. Need at least 10 points.") | |
x = np.array(x_vals) | |
y = np.array(y_vals) | |
# Check for NaNs | |
if np.any(np.isnan(x)) or np.any(np.isnan(y)): | |
raise ValueError("Input data contains NaN values") | |
# Check monotonic increasing x | |
if not np.all(np.diff(x) > 0): | |
raise ValueError("Wavenumbers must be strictly increasing") | |
# Check reasonable range for Raman spectroscopy | |
if min(x) < 0 or max(x) > 10000 or (max(x) - min(x)) < 100: | |
raise ValueError( | |
f"Invalid wavenumber range: {min(x)} - {max(x)}. Expected ~400-4000 cm⁻¹ with span >100") | |
return x, y | |
def create_spectrum_plot(x_raw, y_raw, x_resampled, y_resampled): | |
"""Create spectrum visualization plot""" | |
fig, ax = plt.subplots(1, 2, figsize=(13, 5), dpi=100) | |
# == Raw spectrum == | |
ax[0].plot(x_raw, y_raw, label="Raw", color="dimgray", linewidth=1) | |
ax[0].set_title("Raw Input Spectrum") | |
ax[0].set_xlabel("Wavenumber (cm⁻¹)") | |
ax[0].set_ylabel("Intensity") | |
ax[0].grid(True, alpha=0.3) | |
ax[0].legend() | |
# == Resampled spectrum == | |
ax[1].plot(x_resampled, y_resampled, label="Resampled", color="steelblue", linewidth=1) | |
ax[1].set_title(f"Resampled ({len(y_resampled)} points)") | |
ax[1].set_xlabel("Wavenumber (cm⁻¹)") | |
ax[1].set_ylabel("Intensity") | |
ax[1].grid(True, alpha=0.3) | |
ax[1].legend() | |
plt.tight_layout() | |
# == Convert to image == | |
buf = io.BytesIO() | |
plt.savefig(buf, format='png', bbox_inches='tight', dpi=100) | |
buf.seek(0) | |
plt.close(fig) # Prevent memory leaks | |
return Image.open(buf) | |
def _pct(p: float) -> str: | |
# Fixed-width percent like " 98.7%" or " 2.3%" | |
return f"{float(p)*100:5.1f}%" | |
def render_confidence_progress( | |
probs: np.ndarray, | |
labels: list[str] = ["Stable", "Weathered"], | |
highlight_idx: int | None = None, | |
side_by_side: bool = True | |
): | |
"""Render Streamlit native progress bars (0 - 100). Optionally bold the winning class | |
and place the two bars side-by-side for compactness.""" | |
p = np.asarray(probs, dtype=float) | |
p = np.clip(p, 0.0, 1.0) | |
def _title(i: int, lbl: str, val: float) -> str: | |
t = f"{lbl} - {val*100:.1f}%" | |
return f"**{t}**" if (highlight_idx is not None and i == highlight_idx) else t | |
if side_by_side: | |
cols = st.columns(len(labels)) | |
for i, (lbl, val, col) in enumerate(zip(labels, p, cols)): | |
with col: | |
st.markdown(_title(i, lbl, float(val))) | |
st.progress(int(round(val * 100))) | |
else: | |
for i, (lbl, val) in enumerate(zip(labels, p)): | |
st.markdown(_title(i, lbl, float(val))) | |
st.progress(int(round(val * 100))) | |
def render_kv_grid(d: dict, ncols: int = 2): | |
"""Display dict as a clean grid of key/value rows.""" | |
if not d: | |
return | |
items = list(d.items()) | |
cols = st.columns(ncols) | |
for i, (k, v) in enumerate(items): | |
with cols[i % ncols]: | |
st.markdown( | |
f"<div class='kv-row'><span class='kv-key'>{k}</span>" | |
f"<span class='kv-val'>{v}</span></div>", | |
unsafe_allow_html=True | |
) | |
def render_model_meta(model_choice: str): | |
info = MODEL_CONFIG.get(model_choice, {}) | |
emoji = info.get("emoji", "") | |
desc = info.get("description", "").strip() | |
acc = info.get("accuracy", "-") | |
f1 = info.get("f1", "-") | |
st.caption(f"{emoji} **Model Snapshot** - {model_choice}") | |
cols = st.columns(2) | |
with cols[0]: | |
st.metric("Accuracy", acc) | |
with cols[1]: | |
st.metric("F1 Score", f1) | |
if desc: | |
st.caption(desc) | |
def get_confidence_description(logit_margin): | |
"""Get human-readable confidence description""" | |
if logit_margin > 1000: | |
return "VERY HIGH", "🟢" | |
elif logit_margin > 250: | |
return "HIGH", "🟡" | |
elif logit_margin > 100: | |
return "MODERATE", "🟠" | |
else: | |
return "LOW", "🔴" | |
def log_message(msg: str): | |
"""Append a timestamped line to the in-app log, creating the buffer if needed.""" | |
if "log_messages" not in st.session_state or st.session_state["log_messages"] is None: | |
st.session_state["log_messages"] = [] | |
st.session_state["log_messages"].append( | |
f"[{time.strftime('%Y-%m-%d %H:%M:%S')}] {msg}" | |
) | |
def trigger_run(): | |
"""Set a flag so we can detect button press reliably across reruns""" | |
st.session_state['run_requested'] = True | |
def on_sample_change(): | |
"""Read selected sample once and persist as text.""" | |
sel = st.session_state.get("sample_select", "-- Select Sample --") | |
if sel == "-- Select Sample --": | |
return | |
try: | |
text = (Path(SAMPLE_DATA_DIR / sel).read_text(encoding="utf-8")) | |
st.session_state["input_text"] = text | |
st.session_state["filename"] = sel | |
st.session_state["input_source"] = "sample" | |
# 🔧 Clear previous results so right column resets immediately | |
reset_results("New sample selected") | |
st.session_state["status_message"] = f"📁 Sample '{sel}' ready for analysis" | |
st.session_state["status_type"] = "success" | |
except (FileNotFoundError, IOError) as e: | |
st.session_state["status_message"] = f"❌ Error loading sample: {e}" | |
st.session_state["status_type"] = "error" | |
def on_input_mode_change(): | |
"""Reset sample when switching to Upload""" | |
if st.session_state["input_mode"] == "Upload File": | |
st.session_state["sample_select"] = "-- Select Sample --" | |
# 🔧 Reset when switching modes to prevent stale right-column visuals | |
reset_results("Switched input mode") | |
def on_model_change(): | |
"""Force the right column back to init state when the model changes""" | |
reset_results("Model changed") | |
def reset_results(reason: str = ""): | |
"""Clear previous inference artifacts so the right column returns to initial state.""" | |
st.session_state["inference_run_once"] = False | |
st.session_state["x_raw"] = None | |
st.session_state["y_raw"] = None | |
st.session_state["y_resampled"] = None | |
# ||== Clear logs between runs ==|| | |
st.session_state["log_messages"] = [] | |
# ||== Always reset the status box ==|| | |
st.session_state["status_message"] = ( | |
f"ℹ️ {reason}" | |
if reason else "Ready to analyze polymer spectra 🔬" | |
) | |
st.session_state["status_type"] = "info" | |
def reset_ephemeral_state(): | |
"""remove everything except KEPT global UI context""" | |
for k in list(st.session_state.keys()): | |
if k not in KEEP_KEYS: | |
st.session_state.pop(k, None) | |
# == bump the uploader version → new widget instance with empty value == | |
st.session_state["uploader_version"] += 1 | |
st.session_state["current_upload_key"] = f"upload_txt_{st.session_state['uploader_version']}" | |
# == reseed other emphemeral state == | |
st.session_state["input_text"] = None | |
st.session_state["filename"] = None | |
st.session_state["input_source"] = None | |
st.session_state["sample_select"] = "-- Select Sample --" | |
# == return the UI to a clean state == | |
st.session_state["inference_run_once"] = False | |
st.session_state["x_raw"] = None | |
st.session_state["y_raw"] = None | |
st.session_state["y_resampled"] = None | |
st.session_state["log_messages"] = [] | |
st.session_state["status_message"] = "Ready to analyze polymer spectra 🔬" | |
st.session_state["status_type"] = "info" | |
st.rerun() | |
# Main app | |
def main(): | |
init_session_state() | |
# Sidebar | |
with st.sidebar: | |
# Header | |
st.header("AI-Driven Polymer Classification") | |
st.caption("Predict polymer degradation (Stable vs Weathered) from Raman spectra using validated CNN models. — v0.1") | |
model_labels = [f"{MODEL_CONFIG[name]['emoji']} {name}" for name in MODEL_CONFIG.keys()] | |
selected_label = st.selectbox("Choose AI Model", model_labels, key="model_select", on_change=on_model_change) | |
model_choice = selected_label.split(" ", 1)[1] | |
# ===Compact metadata directly under dropdown=== | |
render_model_meta(model_choice) | |
# ===Collapsed info to reduce clutter=== | |
with st.expander("About This App",icon=":material/info:", expanded=False): | |
st.markdown(""" | |
AI-Driven Polymer Aging Prediction and Classification | |
**Purpose**: Classify polymer degradation using AI | |
**Input**: Raman spectroscopy `.txt` files | |
**Models**: CNN architectures for binary classification | |
**Next**: More trained CNNs in evaluation pipeline | |
--- | |
**Contributors** | |
Dr. Sanmukh Kuppannagari (Mentor) | |
Dr. Metin Karailyan (Mentor) | |
👨💻 Jaser Hasan (Author) | |
--- | |
**Links** | |
🔗 [Live HF Space](https://huggingface.co/spaces/dev-jas/polymer-aging-ml) | |
📂 [GitHub Repository](https://github.com/KLab-AI3/ml-polymer-recycling) | |
--- | |
**Citation Figure2CNN (baseline)** | |
Neo et al., 2023, *Resour. Conserv. Recycl.*, 188, 106718. | |
[https://doi.org/10.1016/j.resconrec.2022.106718](https://doi.org/10.1016/j.resconrec.2022.106718) | |
""") | |
# Main content area | |
col1, col2 = st.columns([1, 1.35], gap="small") | |
with col1: | |
st.markdown("##### Data Input") | |
mode = st.radio( | |
"Input mode", | |
["Upload File", "Sample Data"], | |
key="input_mode", | |
horizontal=True, | |
on_change=on_input_mode_change | |
) | |
# ---- Upload tab ---- | |
if mode == "Upload File": | |
upload_key = st.session_state["current_upload_key"] | |
up = st.file_uploader( | |
"Upload Raman spectrum (.txt)", | |
type="txt", | |
help="Upload a text file with wavenumber and intensity columns", | |
key=upload_key, # ← versioned key | |
) | |
# == process change immediately (no on_change; simpler & reliable) == | |
if up is not None: | |
raw = up.read() | |
text = raw.decode("utf-8") if isinstance(raw, bytes) else raw | |
# == only reparse if its a different file|source == | |
if st.session_state.get("filename") != getattr(up, "name", None) or st.session_state.get("input_source") != "upload": | |
st.session_state["input_text"] = text | |
st.session_state["filename"] = getattr(up, "name", "uploaded.txt") | |
st.session_state["input_source"] = "upload" | |
# == clear right column immediately == | |
reset_results("New file selected") | |
st.session_state["status_message"] = f"📁 File '{st.session_state['filename']}' ready for analysis" | |
st.session_state["status_type"] = "success" | |
# ---- Sample tab ---- | |
else: | |
sample_files = get_sample_files() | |
if sample_files: | |
options = ["-- Select Sample --"] + \ | |
[p.name for p in sample_files] | |
sel = st.selectbox( | |
"Choose sample spectrum:", | |
options, | |
key="sample_select", | |
on_change=on_sample_change, # <-- critical | |
) | |
if sel != "-- Select Sample --": | |
st.markdown(f"✅ Loaded sample: {sel}") | |
else: | |
st.info("No sample data available") | |
# ---- Status box ---- | |
msg = st.session_state.get("status_message", "Ready") | |
typ = st.session_state.get("status_type", "info") | |
if typ == "success": | |
st.success(msg) | |
elif typ == "error": | |
st.error(msg) | |
else: | |
st.info(msg) | |
# ---- Model load ---- | |
model, model_loaded = load_model(model_choice) | |
if not model_loaded: | |
st.warning("⚠️ Model weights not available - using demo mode") | |
# Ready to run if we have text and a model | |
inference_ready = bool(st.session_state.get( | |
"input_text")) and (model is not None) | |
# === Run Analysis (form submit batches state) === | |
with st.form("analysis_form", clear_on_submit=False): | |
submitted = st.form_submit_button( | |
"Run Analysis", | |
type="primary", | |
disabled=not inference_ready, | |
) | |
if st.button("Reset", help="Clear current file(s), plots, and results"): | |
reset_ephemeral_state() | |
if submitted and inference_ready: | |
# parse → preprocess → predict → render | |
# Handles the submission of the analysis form and performs spectrum data processing | |
try: | |
raw_text = st.session_state["input_text"] | |
filename = st.session_state.get("filename") or "unknown.txt" | |
# Parse | |
with st.spinner("Parsing spectrum data..."): | |
x_raw, y_raw = parse_spectrum_data(raw_text) | |
# Resample | |
with st.spinner("Resampling spectrum..."): | |
# ===Resample Unpack=== | |
r1, r2 = resample_spectrum(x_raw, y_raw, TARGET_LEN) | |
def _is_strictly_increasing(a): | |
a = np.asarray(a) | |
return a.ndim == 1 and a.size >= 2 and np.all(np.diff(a) > 0) | |
if _is_strictly_increasing(r1) and not _is_strictly_increasing(r2): | |
x_resampled, y_resampled = np.asarray(r1), np.asarray(r2) | |
elif _is_strictly_increasing(r2) and not _is_strictly_increasing(r1): | |
x_resampled, y_resampled = np.asarray(r2), np.asarray(r1) | |
else: | |
# == Ambigous; assume (x, y) and log | |
x_resampled, y_resampled = np.asarray(r1), np.asarray(r2) | |
log_message("Resample outputs ambigous; assumed (x, y).") | |
# ===Persists for plotting + inference=== | |
st.session_state["x_raw"] = x_raw | |
st.session_state["y_raw"] = y_raw | |
st.session_state["x_resampled"] = x_resampled # ←-- NEW | |
st.session_state["y_resampled"] = y_resampled | |
# Persist results (drives right column) | |
st.session_state["x_raw"] = x_raw | |
st.session_state["y_raw"] = y_raw | |
st.session_state["y_resampled"] = y_resampled | |
st.session_state["inference_run_once"] = True | |
st.session_state["status_message"] = f"🔍 Analysis completed for: {filename}" | |
st.session_state["status_type"] = "success" | |
st.rerun() | |
except (ValueError, TypeError) as e: | |
st.error(f"❌ Analysis failed: {e}") | |
st.session_state["status_message"] = f"❌ Error: {e}" | |
st.session_state["status_type"] = "error" | |
# Results column | |
with col2: | |
if st.session_state.get("inference_run_once", False): | |
st.markdown("##### Analysis Results") | |
# Get data from session state | |
x_raw = st.session_state.get('x_raw') | |
y_raw = st.session_state.get('y_raw') | |
x_resampled = st.session_state.get('x_resampled') # ← NEW | |
y_resampled = st.session_state.get('y_resampled') | |
filename = st.session_state.get('filename', 'Unknown') | |
if all(v is not None for v in [x_raw, y_raw, y_resampled]): | |
# Create and display plot | |
try: | |
spectrum_plot = create_spectrum_plot(x_raw, y_raw, x_resampled, y_resampled) | |
st.image( | |
spectrum_plot, caption="Spectrum Preprocessing Results", use_container_width=True) | |
except (ValueError, RuntimeError, TypeError) as e: | |
st.warning(f"Could not generate plot: {e}") | |
log_message(f"Plot generation error: {e}") | |
# Run inference | |
try: | |
with st.spinner("Running AI inference..."): | |
start_time = time.time() | |
# Prepare input tensor | |
input_tensor = torch.tensor( | |
y_resampled, dtype=torch.float32).unsqueeze(0).unsqueeze(0) | |
# Run inference | |
model.eval() | |
with torch.no_grad(): | |
if model is None: | |
raise ValueError( | |
"Model is not loaded. Please check the model configuration or weights.") | |
logits = model(input_tensor) | |
prediction = torch.argmax(logits, dim=1).item() | |
logits_list = logits.detach().numpy().tolist()[0] | |
probs = F.softmax(logits.detach(), dim=1).cpu().numpy().flatten() | |
inference_time = time.time() - start_time | |
log_message( | |
f"Inference completed in {inference_time:.2f}s, prediction: {prediction}") | |
# Clean up memory | |
cleanup_memory() | |
# Get ground truth if available | |
true_label_idx = label_file(filename) | |
true_label_str = LABEL_MAP.get( | |
true_label_idx, "Unknown") if true_label_idx is not None else "Unknown" | |
# Get prediction | |
predicted_class = LABEL_MAP.get( | |
int(prediction), f"Class {int(prediction)}") | |
# === confidence metrics === | |
logit_margin = abs( | |
logits_list[0] - logits_list[1]) if len(logits_list) >= 2 else 0 | |
confidence_desc, confidence_emoji = get_confidence_description( | |
logit_margin) | |
# ===Detailed results tabs=== | |
tab1, tab2, tab3 = st.tabs( | |
["Details", "Technical", "Explanation"]) | |
with tab1: | |
# Main prediction | |
st.markdown(f""" | |
**Sample**: `{filename}` | |
**Model**: `{model_choice}` | |
**Processing Time**: `{inference_time:.2f}s` | |
""") | |
# ===Prediction box && Confidence Margin=== | |
with st.expander("Prediction/Ground Truth & Model Confidence Margin", expanded=False): | |
if predicted_class == "Stable (Unweathered)": | |
st.markdown(f"🟢 **Prediction**: {predicted_class}") | |
else: | |
st.markdown(f"🟡 **Prediction**: {predicted_class}") | |
st.markdown( | |
f"**{confidence_emoji} Confidence**: {confidence_desc} (margin: {logit_margin:.1f})") | |
# Ground truth comparison | |
if true_label_idx is not None: | |
if predicted_class == true_label_str: | |
st.markdown( | |
f"✅ **Ground Truth**: {true_label_str} - **Correct!**") | |
else: | |
st.markdown( | |
f"❌ **Ground Truth**: {true_label_str} - **Incorrect**") | |
else: | |
st.markdown( | |
"**Ground Truth**: Unknown (filename doesn't follow naming convention)") | |
st.markdown("###### Confidence Overview") | |
render_confidence_progress( | |
probs, | |
labels=["Stable", "Weathered"], | |
highlight_idx=int(prediction), | |
side_by_side=True, # Set false for stacked << | |
) | |
with tab2: | |
with st.expander("Diagnostics/Technical Info (advanced)", expanded=False): | |
st.markdown("###### Model Output (Logits)") | |
cols = st.columns(2) | |
for i, score in enumerate(logits_list): | |
label = LABEL_MAP.get(i, f"Class {i}") | |
(cols[i % 2]).metric(label, f"{score:.2f}") | |
st.markdown("###### Spectrum Statistics") | |
spec_stats = { | |
"Original Length": len(x_raw) if x_raw is not None else 0, | |
"Resampled Length": TARGET_LEN, | |
"Wavenumber Range": f"{min(x_raw):.1f}–{max(x_raw):.1f} cm⁻¹" if x_raw is not None else "N/A", | |
"Intensity Range": f"{min(y_raw):.1f}–{max(y_raw):.1f}" if y_raw is not None else "N/A", | |
"Confidence Bucket": confidence_desc, | |
} | |
render_kv_grid(spec_stats, ncols=2) | |
st.markdown("---") | |
st.markdown("###### Model Statistics") | |
model_path = MODEL_CONFIG[model_choice]["path"] | |
mtime = os.path.getmtime(model_path) if os.path.exists(model_path) else None | |
file_hash = ( | |
hashlib.md5(open(model_path, 'rb').read()).hexdigest() | |
if os.path.exists(model_path) else "N/A" | |
) | |
model_stats = { | |
"Architecture": model_choice, | |
"Model Path": model_path, | |
"Weights Last Modified": time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(mtime)) if mtime else "N/A", | |
"Weights Hash (md5)": file_hash, | |
"Input Shape": list(input_tensor.shape), | |
"Output Shape": list(logits.shape), | |
"Inference Time": f"{inference_time:.3f}s", | |
"Device": "CPU", | |
"Model Loaded": model_loaded, | |
} | |
render_kv_grid(model_stats, ncols=2) | |
st.markdown("---") | |
st.markdown("###### Debug Log") | |
st.text_area("Logs", "\n".join(st.session_state.get("log_messages", [])), height=110) | |
with tab3: | |
st.markdown(""" | |
**🔍 Analysis Process** | |
1. **Data Upload**: Raman spectrum file loaded | |
2. **Preprocessing**: Data parsed and resampled to 500 points | |
3. **AI Inference**: CNN model analyzes spectral patterns | |
4. **Classification**: Binary prediction with confidence scores | |
**🧠 Model Interpretation** | |
The AI model identifies spectral features indicative of: | |
- **Stable polymers**: Well-preserved molecular structure | |
- **Weathered polymers**: Degraded/oxidized molecular bonds | |
**🎯 Applications** | |
- Material longevity assessment | |
- Recycling viability evaluation | |
- Quality control in manufacturing | |
- Environmental impact studies | |
""") | |
except (ValueError, RuntimeError) as e: | |
st.error(f"❌ Inference failed: {str(e)}") | |
log_message(f"Inference error: {str(e)}") | |
else: | |
st.error( | |
"❌ Missing spectrum data. Please upload a file and run analysis.") | |
else: | |
# ===Getting Started=== | |
st.markdown(""" | |
##### Get started by: | |
1. Select an AI model in the sidebar | |
2. Upload a Raman spectrum file or choose a sample | |
3. Click "Run Analysis" to get predictions | |
##### Supported formats: | |
- Text files (.txt) with wavenumber and intensity columns | |
- Space or comma-separated values | |
- Any length (automatically resampled to 500 points) | |
##### Example applications: | |
- 🔬 Research on polymer degradation | |
- ♻️ Recycling feasibility assessment | |
- 🌱 Sustainability impact studies | |
- 🏭 Quality control in manufacturing | |
""") | |
# Run the application | |
main() | |