Spaces:
Running
Running
# from fastapi import FastAPI, HTTPException | |
from fastapi import FastAPI | |
from pydantic import BaseModel | |
# import torch | |
# from backend.inference_utils import load_model, run_inference | |
# -- FastAPI app -- | |
app = FastAPI() | |
# -- Input Schema -- | |
class InferenceRequest(BaseModel): | |
model_name: str | |
spectrum: list[float] | |
def root(): | |
return {"message": "Polymer Aging Inference API is online"} | |
def infer(request: InferenceRequest): | |
return{ | |
"prediction": "Stubbed Output", | |
"class_index": 0, | |
"logits": [0.0, 1.0], | |
"class_labels": ["Stub", "Output"], | |
} | |
# def infer(request: InferenceRequest): | |
# try: | |
# model = load_model(request.model_name) | |
# result = run_inference(model, request.spectrum) | |
# return result | |
# except Exception as e: | |
# raise HTTPException(status_code=500, detail=str(e)) from e |