Spaces:
Sleeping
Sleeping
| """ | |
| AI-Driven Polymer Aging Prediction and Classification | |
| Hugging Face Spaces Deployment | |
| This is an adapted version of the Streamlit app optimized for Hugging Face Spaces deployment. | |
| It maintains all the functionality of the original app while being self-contained and cloud-ready. | |
| """ | |
| BUILD_LABEL = "proof-2025-08-24-01" | |
| import os, streamlit as st, sys | |
| st.sidebar.caption( | |
| f"Build: {BUILD_LABEL} | __file__: {__file__} | cwd: {os.getcwd()} | py: {sys.version.split()[0]}" | |
| ) | |
| import os | |
| import sys | |
| from pathlib import Path | |
| # Ensure 'utils' directory is in the Python path | |
| utils_path = Path(__file__).resolve().parent / "utils" | |
| if utils_path.is_dir() and str(utils_path) not in sys.path: | |
| sys.path.append(str(utils_path)) | |
| import streamlit as st | |
| import torch | |
| import numpy as np | |
| import matplotlib | |
| matplotlib.use("Agg") # ensure headless rendering in Spaces | |
| import matplotlib.pyplot as plt | |
| from PIL import Image | |
| import io | |
| from pathlib import Path | |
| import time | |
| import gc | |
| import hashlib | |
| import logging | |
| # Import local modules | |
| from models.figure2_cnn import Figure2CNN | |
| from models.resnet_cnn import ResNet1D | |
| # Prefer canonical script; fallback to local utils for HF hard-copy scenario | |
| try: | |
| from scripts.preprocess_dataset import resample_spectrum | |
| except ImportError: | |
| from utils.preprocessing import resample_spectrum | |
| # Configuration | |
| st.set_page_config( | |
| page_title="ML Polymer Classification", | |
| page_icon="π¬", | |
| layout="wide", | |
| initial_sidebar_state="expanded" | |
| ) | |
| # Stabilize tab panel height on HF Spaces to prevent visible column jitter. | |
| # This sets a minimum height for the content area under the tab headers. | |
| st.markdown(""" | |
| <style> | |
| /* Tabs content area: the sibling after the tablist */ | |
| div[data-testid="stTabs"] > div[role="tablist"] + div { min-height: 420px;} | |
| </style> | |
| """, unsafe_allow_html=True) | |
| # Constants | |
| TARGET_LEN = 500 | |
| SAMPLE_DATA_DIR = "sample_data" | |
| # Prefer env var, else 'model_weights' if present; else canonical 'outputs' | |
| MODEL_WEIGHTS_DIR = ( | |
| os.getenv("WEIGHTS_DIR") | |
| or ("model_weights" if os.path.isdir("model_weights") else "outputs") | |
| ) | |
| # Model configuration | |
| MODEL_CONFIG = { | |
| "Figure2CNN (Baseline)": { | |
| "class": Figure2CNN, | |
| "path": f"{MODEL_WEIGHTS_DIR}/figure2_model.pth", | |
| "emoji": "π¬", | |
| "description": "Baseline CNN with standard filters", | |
| "accuracy": "94.80%", | |
| "f1": "94.30%" | |
| }, | |
| "ResNet1D (Advanced)": { | |
| "class": ResNet1D, | |
| "path": f"{MODEL_WEIGHTS_DIR}/resnet_model.pth", | |
| "emoji": "π§ ", | |
| "description": "Residual CNN with deeper feature learning", | |
| "accuracy": "96.20%", | |
| "f1": "95.90%" | |
| } | |
| } | |
| # Label mapping | |
| LABEL_MAP = {0: "Stable (Unweathered)", 1: "Weathered (Degraded)"} | |
| # Utility functions | |
| def label_file(filename: str) -> int: | |
| """Extract label from filename based on naming convention""" | |
| name = Path(filename).name.lower() | |
| if name.startswith("sta"): | |
| return 0 | |
| elif name.startswith("wea"): | |
| return 1 | |
| else: | |
| # Return None for unknown patterns instead of raising error | |
| return -1 # Default value for unknown patterns | |
| def load_state_dict(_mtime, model_path): | |
| """Load state dict with mtime in cache key to detect file changes""" | |
| try: | |
| return torch.load(model_path, map_location="cpu") | |
| except Exception as e: | |
| st.warning(f"Error loading state dict: {e}") | |
| return None | |
| def load_model(model_name): | |
| """Load and cache the specified model with error handling""" | |
| try: | |
| config = MODEL_CONFIG[model_name] | |
| model_class = config["class"] | |
| model_path = config["path"] | |
| # Initialize model | |
| model = model_class(input_length=TARGET_LEN) | |
| # Check if model file exists | |
| if not os.path.exists(model_path): | |
| st.warning(f"β οΈ Model weights not found: {model_path}") | |
| st.info("Using randomly initialized model for demonstration purposes.") | |
| return model, False | |
| # Get mtime for cache invalidation | |
| mtime = os.path.getmtime(model_path) | |
| # Load weights | |
| state_dict = load_state_dict(mtime, model_path) | |
| if state_dict: | |
| model.load_state_dict(state_dict, strict=True) | |
| model.eval() | |
| return model, True | |
| else: | |
| return model, False | |
| except Exception as e: | |
| st.error(f"β Error loading model {model_name}: {str(e)}") | |
| return None, False | |
| def cleanup_memory(): | |
| """Clean up memory after inference""" | |
| gc.collect() | |
| if torch.cuda.is_available(): | |
| torch.cuda.empty_cache() | |
| def get_sample_files(): | |
| """Get list of sample files if available""" | |
| sample_dir = Path(SAMPLE_DATA_DIR) | |
| if sample_dir.exists(): | |
| return sorted(list(sample_dir.glob("*.txt"))) | |
| return [] | |
| def parse_spectrum_data(raw_text): | |
| """Parse spectrum data from text with robust error handling and validation""" | |
| x_vals, y_vals = [], [] | |
| for line in raw_text.splitlines(): | |
| line = line.strip() | |
| if not line or line.startswith('#'): # Skip empty lines and comments | |
| continue | |
| try: | |
| # Handle different separators | |
| parts = line.replace(",", " ").split() | |
| numbers = [p for p in parts if p.replace('.', '', 1).replace('-', '', 1).replace('+', '', 1).isdigit()] | |
| if len(numbers) >= 2: | |
| x, y = float(numbers[0]), float(numbers[1]) | |
| x_vals.append(x) | |
| y_vals.append(y) | |
| except ValueError: | |
| # Skip problematic lines but don't fail completely | |
| continue | |
| if len(x_vals) < 10: # Minimum reasonable spectrum length | |
| raise ValueError(f"Insufficient data points: {len(x_vals)}. Need at least 10 points.") | |
| x = np.array(x_vals) | |
| y = np.array(y_vals) | |
| # Check for NaNs | |
| if np.any(np.isnan(x)) or np.any(np.isnan(y)): | |
| raise ValueError("Input data contains NaN values") | |
| # Check monotonic increasing x | |
| if not np.all(np.diff(x) > 0): | |
| raise ValueError("Wavenumbers must be strictly increasing") | |
| # Check reasonable range for Raman spectroscopy | |
| if min(x) < 0 or max(x) > 10000 or (max(x) - min(x)) < 100: | |
| raise ValueError(f"Invalid wavenumber range: {min(x)} - {max(x)}. Expected ~400-4000 cmβ»ΒΉ with span >100") | |
| return x, y | |
| def create_spectrum_plot(x_raw, y_raw, y_resampled): | |
| """Create spectrum visualization plot""" | |
| fig, ax = plt.subplots(1, 2, figsize=(12, 4), dpi=100) | |
| # Raw spectrum | |
| ax[0].plot(x_raw, y_raw, label="Raw", color="dimgray", linewidth=1) | |
| ax[0].set_title("Raw Input Spectrum") | |
| ax[0].set_xlabel("Wavenumber (cmβ»ΒΉ)") | |
| ax[0].set_ylabel("Intensity") | |
| ax[0].grid(True, alpha=0.3) | |
| ax[0].legend() | |
| # Resampled spectrum | |
| x_resampled = np.linspace(min(x_raw), max(x_raw), TARGET_LEN) | |
| ax[1].plot(x_resampled, y_resampled, label="Resampled", color="steelblue", linewidth=1) | |
| ax[1].set_title(f"Resampled ({TARGET_LEN} points)") | |
| ax[1].set_xlabel("Wavenumber (cmβ»ΒΉ)") | |
| ax[1].set_ylabel("Intensity") | |
| ax[1].grid(True, alpha=0.3) | |
| ax[1].legend() | |
| plt.tight_layout() | |
| # Convert to image | |
| buf = io.BytesIO() | |
| plt.savefig(buf, format='png', bbox_inches='tight', dpi=100) | |
| buf.seek(0) | |
| plt.close(fig) # Prevent memory leaks | |
| return Image.open(buf) | |
| def get_confidence_description(logit_margin): | |
| """Get human-readable confidence description""" | |
| if logit_margin > 1000: | |
| return "VERY HIGH", "π’" | |
| elif logit_margin > 250: | |
| return "HIGH", "π‘" | |
| elif logit_margin > 100: | |
| return "MODERATE", "π " | |
| else: | |
| return "LOW", "π΄" | |
| def init_session_state(): | |
| defaults = { | |
| "status_message": "Ready to analyze polymer spectra π¬", | |
| "status_type": "info", | |
| "input_text": None, | |
| "filename": None, | |
| "input_source": None, # "upload" or "sample" | |
| "sample_select": "-- Select Sample --", | |
| "input_mode": "Upload File", # controls which pane is visible | |
| "inference_run_once": False, | |
| "x_raw": None, "y_raw": None, "y_resampled": None, | |
| "log_messages": [], | |
| } | |
| for k, v in defaults.items(): | |
| st.session_state.setdefault(k, v) | |
| for key, default_value in defaults.items(): | |
| if key not in st.session_state: | |
| st.session_state[key] = default_value | |
| def log_message(msg: str): | |
| """Append a timestamped line to the in-app log, creating the buffer if needed.""" | |
| if "log_messages" not in st.session_state or st.session_state["log_messages"] is None: | |
| st.session_state["log_messages"] = [] | |
| st.session_state["log_messages"].append( | |
| f"[{time.strftime('%Y-%m-%d %H:%M:%S')}] {msg}" | |
| ) | |
| def trigger_run(): | |
| """Set a flag so we can detect button press reliably across reruns""" | |
| st.session_state['run_requested'] = True | |
| def on_upload_change(): | |
| """Read uploaded file once and persist as text.""" | |
| up = st.session_state.get("upload_txt") # the uploader's key | |
| if not up: | |
| return | |
| raw = up.read() | |
| text = raw.decode("utf-8") if isinstance(raw, bytes) else raw | |
| st.session_state["input_text"] = text | |
| st.session_state["filename"] = getattr(up, "name", "uploaded.txt") | |
| st.session_state["input_source"] = "upload" | |
| st.session_state["status_message"] = f"π File '{st.session_state['filename']}' ready for analysis" | |
| st.session_state["status_type"] = "success" | |
| def on_sample_change(): | |
| """Read selected sample once and persist as text.""" | |
| sel = st.session_state.get("sample_select", "-- Select Sample --") | |
| if sel == "-- Select Sample --": | |
| # Do nothing; leave current input intact (prevents clobbering uploads) | |
| return | |
| try: | |
| text = (Path(SAMPLE_DATA_DIR) / sel).read_text(encoding="utf-8") | |
| st.session_state["input_text"] = text | |
| st.session_state["filename"] = sel | |
| st.session_state["input_source"] = "sample" | |
| st.session_state["status_message"] = f"π Sample '{sel}' ready for analysis" | |
| st.session_state["status_type"] = "success" | |
| except Exception as e: | |
| st.session_state["status_message"] = f"β Error loading sample: {e}" | |
| st.session_state["status_type"] = "error" | |
| def on_input_mode_change(): | |
| if st.session_state["input_mode"] == "Upload File": | |
| # reset sample when switching to Upload | |
| st.session_state["sample_select"] = "-- Select Sample --" | |
| # Main app | |
| def main(): | |
| init_session_state() | |
| # Header | |
| st.title("π¬ AI-Driven Polymer Classification") | |
| st.markdown("**Predict polymer degradation states using Raman spectroscopy and deep learning**") | |
| # Sidebar | |
| with st.sidebar: | |
| st.header("βΉοΈ About This App") | |
| st.markdown(""" | |
| **AIRE 2025 Internship Project** | |
| AI-Driven Polymer Aging Prediction and Classification | |
| π― **Purpose**: Classify polymer degradation using AI | |
| π **Input**: Raman spectroscopy data | |
| π§ **Models**: CNN architectures for binary classification | |
| **Team**: | |
| - **Mentor**: Dr. Sanmukh Kuppannagari | |
| - **Mentor**: Dr. Metin Karailyan | |
| - **Author**: Jaser Hasan | |
| π [GitHub Repository](https://github.com/KLab-AI3/ml-polymer-recycling) | |
| """) | |
| st.markdown("---") | |
| # Model selection | |
| st.subheader("π§ Model Selection") | |
| model_labels = [f"{MODEL_CONFIG[name]['emoji']} {name}" for name in MODEL_CONFIG.keys()] | |
| selected_label = st.selectbox("Choose AI model:", model_labels) | |
| model_choice = selected_label.split(" ", 1)[1] | |
| # Model info | |
| config = MODEL_CONFIG[model_choice] | |
| st.markdown(f""" | |
| **π {config['emoji']} Model Details** | |
| *{config['description']}* | |
| - **Accuracy**: `{config['accuracy']}` | |
| - **F1 Score**: `{config['f1']}` | |
| """) | |
| # Main content area | |
| col1, col2 = st.columns([1, 1.5], gap="large") | |
| with col1: | |
| st.subheader("π Data Input") | |
| mode = st.radio( | |
| "Input mode", | |
| ["Upload File", "Sample Data"], | |
| key="input_mode", | |
| horizontal=True, | |
| on_change=on_input_mode_change | |
| ) | |
| # ---- Upload tab ---- | |
| if mode == "Upload File": | |
| up = st.file_uploader( | |
| "Upload Raman spectrum (.txt)", | |
| type="txt", | |
| help="Upload a text file with wavenumber and intensity columns", | |
| key="upload_txt", | |
| on_change=on_upload_change, # <-- critical | |
| ) | |
| if up: | |
| st.success(f"β Loaded: {up.name}") | |
| # ---- Sample tab ---- | |
| else: | |
| sample_files = get_sample_files() | |
| if sample_files: | |
| options = ["-- Select Sample --"] + [p.name for p in sample_files] | |
| sel = st.selectbox( | |
| "Choose sample spectrum:", | |
| options, | |
| key="sample_select", | |
| on_change=on_sample_change, # <-- critical | |
| ) | |
| if sel != "-- Select Sample --": | |
| st.success(f"β Loaded sample: {sel}") | |
| else: | |
| st.info("No sample data available") | |
| # ---- Status box ---- | |
| st.subheader("π¦ Status") | |
| msg = st.session_state.get("status_message", "Ready") | |
| typ = st.session_state.get("status_type", "info") | |
| if typ == "success": | |
| st.success(msg) | |
| elif typ == "error": | |
| st.error(msg) | |
| else: | |
| st.info(msg) | |
| # ---- Model load ---- | |
| model, model_loaded = load_model(model_choice) | |
| if not model_loaded: | |
| st.warning("β οΈ Model weights not available - using demo mode") | |
| # Ready to run if we have text and a model | |
| inference_ready = bool(st.session_state.get("input_text")) and (model is not None) | |
| # ---- Run Analysis (form submit batches state + submit atomically) ---- | |
| with st.form("analysis_form", clear_on_submit=False): | |
| submitted = st.form_submit_button( | |
| "βΆοΈ Run Analysis", | |
| type="primary", | |
| disabled=not inference_ready, | |
| ) | |
| if submitted and inference_ready: | |
| try: | |
| raw_text = st.session_state["input_text"] | |
| filename = st.session_state.get("filename") or "unknown.txt" | |
| # Parse | |
| with st.spinner("Parsing spectrum data..."): | |
| x_raw, y_raw = parse_spectrum_data(raw_text) | |
| # Resample | |
| with st.spinner("Resampling spectrum..."): | |
| y_resampled = resample_spectrum(x_raw, y_raw, TARGET_LEN) | |
| # Persist results (drives right column) | |
| st.session_state["x_raw"] = x_raw | |
| st.session_state["y_raw"] = y_raw | |
| st.session_state["y_resampled"] = y_resampled | |
| st.session_state["inference_run_once"] = True | |
| st.session_state["status_message"] = f"π Analysis completed for: {filename}" | |
| st.session_state["status_type"] = "success" | |
| st.rerun() | |
| except Exception as e: | |
| st.error(f"β Analysis failed: {e}") | |
| st.session_state["status_message"] = f"β Error: {e}" | |
| st.session_state["status_type"] = "error" | |
| # Results column | |
| with col2: | |
| if st.session_state.get("inference_run_once", False): | |
| st.subheader("π Analysis Results") | |
| # Get data from session state | |
| x_raw = st.session_state.get('x_raw') | |
| y_raw = st.session_state.get('y_raw') | |
| y_resampled = st.session_state.get('y_resampled') | |
| filename = st.session_state.get('filename', 'Unknown') | |
| if all(v is not None for v in [x_raw, y_raw, y_resampled]): | |
| # Create and display plot | |
| try: | |
| spectrum_plot = create_spectrum_plot(x_raw, y_raw, y_resampled) | |
| st.image(spectrum_plot, caption="Spectrum Preprocessing Results", use_container_width=True) | |
| except Exception as e: | |
| st.warning(f"Could not generate plot: {e}") | |
| log_message(f"Plot generation error: {e}") | |
| # Run inference | |
| try: | |
| with st.spinner("Running AI inference..."): | |
| start_time = time.time() | |
| # Prepare input tensor | |
| input_tensor = torch.tensor(y_resampled, dtype=torch.float32).unsqueeze(0).unsqueeze(0) | |
| # Run inference | |
| model.eval() | |
| with torch.no_grad(): | |
| if model is None: | |
| raise ValueError("Model is not loaded. Please check the model configuration or weights.") | |
| logits = model(input_tensor) | |
| prediction = torch.argmax(logits, dim=1).item() | |
| logits_list = logits.detach().numpy().tolist()[0] | |
| inference_time = time.time() - start_time | |
| log_message(f"Inference completed in {inference_time:.2f}s, prediction: {prediction}") | |
| # Clean up memory | |
| cleanup_memory() | |
| # Get ground truth if available | |
| true_label_idx = label_file(filename) | |
| true_label_str = LABEL_MAP.get(true_label_idx, "Unknown") if true_label_idx is not None else "Unknown" | |
| # Get prediction | |
| predicted_class = LABEL_MAP.get(int(prediction), f"Class {int(prediction)}") | |
| # Calculate confidence metrics | |
| logit_margin = abs(logits_list[0] - logits_list[1]) if len(logits_list) >= 2 else 0 | |
| confidence_desc, confidence_emoji = get_confidence_description(logit_margin) | |
| # Display results | |
| st.markdown("### π― Prediction Results") | |
| # Main prediction | |
| st.markdown(f""" | |
| **π¬ Sample**: `{filename}` | |
| **π§ Model**: `{model_choice}` | |
| **β±οΈ Processing Time**: `{inference_time:.2f}s` | |
| """) | |
| # Prediction box | |
| if predicted_class == "Stable (Unweathered)": | |
| st.success(f"π’ **Prediction**: {predicted_class}") | |
| else: | |
| st.warning(f"π‘ **Prediction**: {predicted_class}") | |
| # Confidence | |
| st.markdown(f"**{confidence_emoji} Confidence**: {confidence_desc} (margin: {logit_margin:.1f})") | |
| # Ground truth comparison | |
| if true_label_idx is not None: | |
| if predicted_class == true_label_str: | |
| st.success(f"β **Ground Truth**: {true_label_str} - **Correct!**") | |
| else: | |
| st.error(f"β **Ground Truth**: {true_label_str} - **Incorrect**") | |
| else: | |
| st.info("βΉοΈ **Ground Truth**: Unknown (filename doesn't follow naming convention)") | |
| # Detailed results tabs | |
| tab1, tab2, tab3 = st.tabs(["π Details", "π¬ Technical", "π Explanation"]) | |
| with tab1: | |
| st.markdown("**Model Output (Logits)**") | |
| for i, score in enumerate(logits_list): | |
| label = LABEL_MAP.get(i, f"Class {i}") | |
| st.metric(label, f"{score:.2f}") | |
| st.markdown("**Spectrum Statistics**") | |
| st.json({ | |
| "Original Length": len(x_raw) if x_raw is not None else 0, | |
| "Resampled Length": TARGET_LEN, | |
| "Wavenumber Range": f"{min(x_raw):.1f} - {max(x_raw):.1f} cmβ»ΒΉ" if x_raw is not None else "N/A", | |
| "Intensity Range": f"{min(y_raw):.1f} - {max(y_raw):.1f}" if y_raw is not None else "N/A", | |
| "Model Confidence": confidence_desc | |
| }) | |
| with tab2: | |
| st.markdown("**Technical Information**") | |
| model_path = MODEL_CONFIG[model_choice]["path"] | |
| mtime = os.path.getmtime(model_path) if os.path.exists(model_path) else "N/A" | |
| file_hash = hashlib.md5(open(model_path, 'rb').read()).hexdigest() if os.path.exists(model_path) else "N/A" | |
| st.json({ | |
| "Model Architecture": model_choice, | |
| "Model Path": model_path, | |
| "Weights Last Modified": time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(mtime)) if mtime != "N/A" else "N/A", | |
| "Weights Hash": file_hash, | |
| "Input Shape": list(input_tensor.shape), | |
| "Output Shape": list(logits.shape), | |
| "Inference Time": f"{inference_time:.3f}s", | |
| "Device": "CPU", | |
| "Model Loaded": model_loaded | |
| }) | |
| if not model_loaded: | |
| st.warning("β οΈ Demo mode: Using randomly initialized weights") | |
| # Debug log | |
| st.markdown("**Debug Log**") | |
| st.text_area("Logs", "\n".join(st.session_state.get("log_messages", [])), height=200) | |
| with tab3: | |
| st.markdown(""" | |
| **π Analysis Process** | |
| 1. **Data Upload**: Raman spectrum file loaded | |
| 2. **Preprocessing**: Data parsed and resampled to 500 points | |
| 3. **AI Inference**: CNN model analyzes spectral patterns | |
| 4. **Classification**: Binary prediction with confidence scores | |
| **π§ Model Interpretation** | |
| The AI model identifies spectral features indicative of: | |
| - **Stable polymers**: Well-preserved molecular structure | |
| - **Weathered polymers**: Degraded/oxidized molecular bonds | |
| **π― Applications** | |
| - Material longevity assessment | |
| - Recycling viability evaluation | |
| - Quality control in manufacturing | |
| - Environmental impact studies | |
| """) | |
| except Exception as e: | |
| st.error(f"β Inference failed: {str(e)}") | |
| log_message(f"Inference error: {str(e)}") | |
| else: | |
| st.error("β Missing spectrum data. Please upload a file and run analysis.") | |
| else: | |
| # Welcome message | |
| st.markdown(""" | |
| ### π Welcome to AI Polymer Classification | |
| **Get started by:** | |
| 1. π§ Select an AI model in the sidebar | |
| 2. π Upload a Raman spectrum file or choose a sample | |
| 3. βΆοΈ Click "Run Analysis" to get predictions | |
| **Supported formats:** | |
| - Text files (.txt) with wavenumber and intensity columns | |
| - Space or comma-separated values | |
| - Any length (automatically resampled to 500 points) | |
| **Example applications:** | |
| - π¬ Research on polymer degradation | |
| - β»οΈ Recycling feasibility assessment | |
| - π± Sustainability impact studies | |
| - π Quality control in manufacturing | |
| """) | |
| # Run the application | |
| main() |