Spaces:
Sleeping
Sleeping
| from typing import Union | |
| from utils.multifile import create_batch_uploader, process_multiple_files, display_batch_results | |
| from utils.confidence import calculate_softmax_confidence, get_confidence_badge, create_confidence_progress_html | |
| from utils.results_manager import ResultsManager | |
| from utils.errors import ErrorHandler, safe_execute | |
| from utils.preprocessing import resample_spectrum | |
| from models.resnet_cnn import ResNet1D | |
| from models.figure2_cnn import Figure2CNN | |
| import hashlib | |
| import gc | |
| import time | |
| import io | |
| from PIL import Image | |
| import matplotlib.pyplot as plt | |
| import matplotlib | |
| import numpy as np | |
| import torch | |
| import torch.nn.functional as F | |
| import streamlit as st | |
| import os | |
| import sys | |
| from pathlib import Path | |
| # Ensure 'utils' directory is in the Python path | |
| utils_path = Path(__file__).resolve().parent / "utils" | |
| if utils_path.is_dir() and str(utils_path) not in sys.path: | |
| sys.path.append(str(utils_path)) | |
| matplotlib.use("Agg") # ensure headless rendering in Spaces | |
| # ==Import local modules + new modules== | |
| KEEP_KEYS = { | |
| # ==global UI context we want to keep after "Reset"== | |
| "model_select", # sidebar model key | |
| "input_mode", # radio for Upload|Sample | |
| "uploader_version", # version counter for file uploader | |
| "input_registry", # radio controlling Upload vs Sample | |
| } | |
| # ==Page Configuration== | |
| st.set_page_config( | |
| page_title="ML Polymer Classification", | |
| page_icon="π¬", | |
| layout="wide", | |
| initial_sidebar_state="expanded", | |
| menu_items={ | |
| "Get help": "https://github.com/KLab-AI3/ml-polymer-recycling"} | |
| ) | |
| # ============================================================================== | |
| # THEME-AWARE CUSTOM CSS | |
| # ============================================================================== | |
| # This CSS block has been refactored to use Streamlit's internal theme | |
| # variables. This ensures that all custom components will automatically adapt | |
| # to both light and dark themes selected by the user in the settings menu. | |
| st.markdown(""" | |
| <style> | |
| /* ====== Font Imports (Optional but Recommended) ====== */ | |
| @import url('https://fonts.googleapis.com/css2?family=Inter:wght@400;500;700&family=Fira+Code:wght@400&display=swap'); | |
| /* ====== Base & Typography ====== */ | |
| .stApp, | |
| section[data-testid="stSidebar"], | |
| div[data-testid="stMetricValue"], | |
| div[data-testid="stMetricLabel"] { | |
| font-family: 'Inter', sans-serif; | |
| /* Uses the main text color from the current theme (light or dark) */ | |
| color: var(--text-color); | |
| } | |
| .kv-val { | |
| font-family: 'Fira Code', monospace; | |
| } | |
| /* ====== Custom Containers: Tabs & Info Boxes ====== */ | |
| div[data-testid="stTabs"] > div[role="tablist"] + div { | |
| min-height: 400px; | |
| /* Uses the secondary background color, which is different in light and dark modes */ | |
| background-color: var(--secondary-background-color); | |
| /* Border color uses a semi-transparent version of the text color for a subtle effect that works on any background */ | |
| border: 10px solid rgba(128, 128, 128, 0.2); | |
| border-radius: 10px; | |
| padding: 24px; | |
| box-shadow: 0 2px 4px rgba(0,0,0,0.05); | |
| } | |
| .info-box { | |
| font-size: 0.9rem; | |
| padding: 12px 16px; | |
| border: 1px solid rgba(128, 128, 128, 0.2); | |
| border-radius: 10px; | |
| background-color: var(--secondary-background-color); | |
| } | |
| /* ====== Key-Value Pair Styling ====== */ | |
| .kv-row { | |
| display: flex; | |
| justify-content: space-between; | |
| gap: 16px; | |
| padding: 8px 0; | |
| border-bottom: 1px solid rgba(128, 128, 128, 0.2); | |
| } | |
| .kv-row:last-child { | |
| border-bottom: none; | |
| } | |
| .kv-key { | |
| opacity: 0.7; | |
| font-size: 0.9rem; | |
| white-space: nowrap; | |
| } | |
| .kv-val { | |
| font-size: 0.9rem; | |
| overflow-wrap: break-word; | |
| text-align: right; | |
| } | |
| /* ====== Custom Expander Styling ====== */ | |
| div.stExpander > details > summary::-webkit-details-marker, | |
| div.stExpander > details > summary::marker, | |
| div[data-testid="stExpander"] summary svg { | |
| display: none !important; | |
| } | |
| div.stExpander > details > summary::after { | |
| content: 'DETAILS'; | |
| font-size: 0.75rem; | |
| font-weight: 600; | |
| letter-spacing: 0.5px; | |
| padding: 4px 12px; | |
| border-radius: 999px; | |
| /* The primary color is set in config.toml and adapted by Streamlit */ | |
| background-color: var(--primary); | |
| /* Text on the primary color needs high contrast. White works well for our chosen purple. */ | |
| transition: background-color 0.2s ease-in-out; | |
| } | |
| div.stExpander > details > summary:hover::after { | |
| /* Using a fixed darker shade on hover. A more advanced solution could use color-mix() in CSS. */ | |
| filter: brightness(90%); | |
| } | |
| /* Specialized Expander Labels */ | |
| .expander-results div[data-testid="stExpander"] summary::after { | |
| content: "RESULTS"; | |
| background-color: #16A34A; /* Green is universal for success */ | |
| } | |
| .expander-advanced div[data-testid="stExpander"] summary::after { | |
| content: "ADVANCED"; | |
| background-color: #D97706; /* Amber is universal for warning/technical */ | |
| } | |
| [data-testid="stExpanderDetails"] { | |
| padding: 16px 4px 4px 4px; | |
| background-color: transparent; | |
| border-top: 1px solid rgba(128, 128, 128, 0.2); | |
| margin-top: 12px; | |
| } | |
| /* ====== Sidebar & Metrics ====== */ | |
| section[data-testid="stSidebar"] > div:first-child { | |
| background-color: var(--secondary-background-color); | |
| border-right: 1px solid rgba(128, 128, 128, 0.2); | |
| } | |
| div[data-testid="stMetricValue"] { | |
| font-size: 1.1rem !important; | |
| font-weight: 500; | |
| } | |
| div[data-testid="stMetricLabel"] { | |
| font-size: 0.85rem !important; | |
| opacity: 0.8; | |
| } | |
| /* ====== Interactivity & Accessibility ====== */ | |
| :focus-visible { | |
| /* The focus outline now uses the theme's primary color */ | |
| outline: 2px solid var(--primary); | |
| outline-offset: 2px; | |
| border-radius: 8px; | |
| } | |
| </style> | |
| """, unsafe_allow_html=True) | |
| # ==CONSTANTS== | |
| TARGET_LEN = 500 | |
| SAMPLE_DATA_DIR = Path("sample_data") | |
| # Prefer env var, else 'model_weights' if present; else canonical 'outputs' | |
| MODEL_WEIGHTS_DIR = ( | |
| os.getenv("WEIGHTS_DIR") | |
| or ("model_weights" if os.path.isdir("model_weights") else "outputs") | |
| ) | |
| # Model configuration | |
| MODEL_CONFIG = { | |
| "Figure2CNN (Baseline)": { | |
| "class": Figure2CNN, | |
| "path": f"{MODEL_WEIGHTS_DIR}/figure2_model.pth", | |
| "emoji": "", | |
| "description": "Baseline CNN with standard filters", | |
| "accuracy": "94.80%", | |
| "f1": "94.30%" | |
| }, | |
| "ResNet1D (Advanced)": { | |
| "class": ResNet1D, | |
| "path": f"{MODEL_WEIGHTS_DIR}/resnet_model.pth", | |
| "emoji": "", | |
| "description": "Residual CNN with deeper feature learning", | |
| "accuracy": "96.20%", | |
| "f1": "95.90%" | |
| } | |
| } | |
| # ==Label mapping== | |
| LABEL_MAP = {0: "Stable (Unweathered)", 1: "Weathered (Degraded)"} | |
| # ==UTILITY FUNCTIONS== | |
| def init_session_state(): | |
| """Keep a persistent session state""" | |
| defaults = { | |
| "status_message": "Ready to analyze polymer spectra π¬", | |
| "status_type": "info", | |
| "input_text": None, | |
| "filename": None, | |
| "input_source": None, # "upload" or "sample" | |
| "sample_select": "-- Select Sample --", | |
| "input_mode": "Upload File", # controls which pane is visible | |
| "inference_run_once": False, | |
| "x_raw": None, "y_raw": None, "y_resampled": None, | |
| "log_messages": [], | |
| "uploader_version": 0, | |
| "current_upload_key": "upload_txt_0", | |
| "active_tab": "Details", | |
| "batch_mode": False # Track if in batch mode | |
| } | |
| for k, v in defaults.items(): | |
| st.session_state.setdefault(k, v) | |
| for key, default_value in defaults.items(): | |
| if key not in st.session_state: | |
| st.session_state[key] = default_value | |
| # ==Initialize results table== | |
| ResultsManager.init_results_table() | |
| def label_file(filename: str) -> int: | |
| """Extract label from filename based on naming convention""" | |
| name = Path(filename).name.lower() | |
| if name.startswith("sta"): | |
| return 0 | |
| elif name.startswith("wea"): | |
| return 1 | |
| else: | |
| # Return None for unknown patterns instead of raising error | |
| return -1 # Default value for unknown patterns | |
| def load_state_dict(_mtime, model_path): | |
| """Load state dict with mtime in cache key to detect file changes""" | |
| try: | |
| return torch.load(model_path, map_location="cpu") | |
| except (FileNotFoundError, RuntimeError) as e: | |
| st.warning(f"Error loading state dict: {e}") | |
| return None | |
| def load_model(model_name): | |
| """Load and cache the specified model with error handling""" | |
| try: | |
| config = MODEL_CONFIG[model_name] | |
| model_class = config["class"] | |
| model_path = config["path"] | |
| # Initialize model | |
| model = model_class(input_length=TARGET_LEN) | |
| # Check if model file exists | |
| if not os.path.exists(model_path): | |
| st.warning(f"β οΈ Model weights not found: {model_path}") | |
| st.info("Using randomly initialized model for demonstration purposes.") | |
| return model, False | |
| # Get mtime for cache invalidation | |
| mtime = os.path.getmtime(model_path) | |
| # Load weights | |
| state_dict = load_state_dict(mtime, model_path) | |
| if state_dict: | |
| model.load_state_dict(state_dict, strict=True) | |
| if model is None: | |
| raise ValueError( | |
| "Model is not loaded. Please check the model configuration or weights.") | |
| model.eval() | |
| return model, True | |
| else: | |
| return model, False | |
| except (FileNotFoundError, KeyError, RuntimeError) as e: | |
| st.error(f"β Error loading model {model_name}: {str(e)}") | |
| return None, False | |
| def cleanup_memory(): | |
| """Clean up memory after inference""" | |
| gc.collect() | |
| if torch.cuda.is_available(): | |
| torch.cuda.empty_cache() | |
| def run_inference(y_resampled, model_choice, _cache_key=None): | |
| """Run model inference and cache results""" | |
| model, model_loaded = load_model(model_choice) | |
| if not model_loaded: | |
| return None, None, None, None, None | |
| input_tensor = torch.tensor( | |
| y_resampled, dtype=torch.float32).unsqueeze(0).unsqueeze(0) | |
| start_time = time.time() | |
| model.eval() | |
| with torch.no_grad(): | |
| if model is None: | |
| raise ValueError( | |
| "Model is not loaded. Please check the model configuration or weights.") | |
| logits = model(input_tensor) | |
| prediction = torch.argmax(logits, dim=1).item() | |
| logits_list = logits.detach().numpy().tolist()[0] | |
| probs = F.softmax(logits.detach(), dim=1).cpu().numpy().flatten() | |
| inference_time = time.time() - start_time | |
| cleanup_memory() | |
| return prediction, logits_list, probs, inference_time, logits | |
| def get_sample_files(): | |
| """Get list of sample files if available""" | |
| sample_dir = Path(SAMPLE_DATA_DIR) | |
| if sample_dir.exists(): | |
| return sorted(list(sample_dir.glob("*.txt"))) | |
| return [] | |
| def parse_spectrum_data(raw_text): | |
| """Parse spectrum data from text with robust error handling and validation""" | |
| x_vals, y_vals = [], [] | |
| for line in raw_text.splitlines(): | |
| line = line.strip() | |
| if not line or line.startswith('#'): # Skip empty lines and comments | |
| continue | |
| try: | |
| # Handle different separators | |
| parts = line.replace(",", " ").split() | |
| numbers = [p for p in parts if p.replace('.', '', 1).replace( | |
| '-', '', 1).replace('+', '', 1).isdigit()] | |
| if len(numbers) >= 2: | |
| x, y = float(numbers[0]), float(numbers[1]) | |
| x_vals.append(x) | |
| y_vals.append(y) | |
| except ValueError: | |
| # Skip problematic lines but don't fail completely | |
| continue | |
| if len(x_vals) < 10: # Minimum reasonable spectrum length | |
| raise ValueError( | |
| f"Insufficient data points: {len(x_vals)}. Need at least 10 points.") | |
| x = np.array(x_vals) | |
| y = np.array(y_vals) | |
| # Check for NaNs | |
| if np.any(np.isnan(x)) or np.any(np.isnan(y)): | |
| raise ValueError("Input data contains NaN values") | |
| # Check monotonic increasing x | |
| if not np.all(np.diff(x) > 0): | |
| raise ValueError("Wavenumbers must be strictly increasing") | |
| # Check reasonable range for Raman spectroscopy | |
| if min(x) < 0 or max(x) > 10000 or (max(x) - min(x)) < 100: | |
| raise ValueError( | |
| f"Invalid wavenumber range: {min(x)} - {max(x)}. Expected ~400-4000 cmβ»ΒΉ with span >100") | |
| return x, y | |
| def create_spectrum_plot(x_raw, y_raw, x_resampled, y_resampled, _cache_key=None): | |
| """Create spectrum visualization plot""" | |
| fig, ax = plt.subplots(1, 2, figsize=(13, 5), dpi=100) | |
| # == Raw spectrum == | |
| ax[0].plot(x_raw, y_raw, label="Raw", color="dimgray", linewidth=1) | |
| ax[0].set_title("Raw Input Spectrum") | |
| ax[0].set_xlabel("Wavenumber (cmβ»ΒΉ)") | |
| ax[0].set_ylabel("Intensity") | |
| ax[0].grid(True, alpha=0.3) | |
| ax[0].legend() | |
| # == Resampled spectrum == | |
| ax[1].plot(x_resampled, y_resampled, label="Resampled", | |
| color="steelblue", linewidth=1) | |
| ax[1].set_title(f"Resampled ({len(y_resampled)} points)") | |
| ax[1].set_xlabel("Wavenumber (cmβ»ΒΉ)") | |
| ax[1].set_ylabel("Intensity") | |
| ax[1].grid(True, alpha=0.3) | |
| ax[1].legend() | |
| plt.tight_layout() | |
| # == Convert to image == | |
| buf = io.BytesIO() | |
| plt.savefig(buf, format='png', bbox_inches='tight', dpi=100) | |
| buf.seek(0) | |
| plt.close(fig) # Prevent memory leaks | |
| return Image.open(buf) | |
| def render_confidence_progress( | |
| probs: np.ndarray, | |
| labels: list[str] = ["Stable", "Weathered"], | |
| highlight_idx: Union[int, None] = None, | |
| side_by_side: bool = True | |
| ): | |
| """Render Streamlit native progress bars with scientific formatting.""" | |
| p = np.asarray(probs, dtype=float) | |
| p = np.clip(p, 0.0, 1.0) | |
| if side_by_side: | |
| cols = st.columns(len(labels)) | |
| for i, (lbl, val, col) in enumerate(zip(labels, p, cols)): | |
| with col: | |
| is_highlighted = ( | |
| highlight_idx is not None and i == highlight_idx) | |
| label_text = f"**{lbl}**" if is_highlighted else lbl | |
| st.markdown(f"{label_text}: {val*100:.1f}%") | |
| st.progress(int(round(val * 100))) | |
| else: | |
| # Vertical layout for better readability | |
| for i, (lbl, val) in enumerate(zip(labels, p)): | |
| is_highlighted = (highlight_idx is not None and i == highlight_idx) | |
| # Create a container for each probability | |
| with st.container(): | |
| col1, col2 = st.columns([3, 1]) | |
| with col1: | |
| if is_highlighted: | |
| st.markdown(f"**{lbl}** β Predicted") | |
| else: | |
| st.markdown(f"{lbl}") | |
| with col2: | |
| st.metric( | |
| label="", | |
| value=f"{val*100:.1f}%", | |
| delta=None | |
| ) | |
| # Progress bar with conditional styling | |
| if is_highlighted: | |
| st.progress(int(round(val * 100))) | |
| st.caption("π― **Model Prediction**") | |
| else: | |
| st.progress(int(round(val * 100))) | |
| if i < len(labels) - 1: # Add spacing between items | |
| st.markdown("") | |
| def render_kv_grid(d: dict, ncols: int = 2): | |
| """Display dict as a clean grid of key/value rows using native Streamlit components.""" | |
| if not d: | |
| return | |
| items = list(d.items()) | |
| cols = st.columns(ncols) | |
| for i, (k, v) in enumerate(items): | |
| with cols[i % ncols]: | |
| st.caption(f"**{k}:** {v}") | |
| def render_model_meta(model_choice: str): | |
| info = MODEL_CONFIG.get(model_choice, {}) | |
| emoji = info.get("emoji", "") | |
| desc = info.get("description", "").strip() | |
| acc = info.get("accuracy", "-") | |
| f1 = info.get("f1", "-") | |
| st.caption(f"{emoji} **Model Snapshot** - {model_choice}") | |
| cols = st.columns(2) | |
| with cols[0]: | |
| st.metric("Accuracy", acc) | |
| with cols[1]: | |
| st.metric("F1 Score", f1) | |
| if desc: | |
| st.caption(desc) | |
| def get_confidence_description(logit_margin): | |
| """Get human-readable confidence description""" | |
| if logit_margin > 1000: | |
| return "VERY HIGH", "π’" | |
| elif logit_margin > 250: | |
| return "HIGH", "π‘" | |
| elif logit_margin > 100: | |
| return "MODERATE", "π " | |
| else: | |
| return "LOW", "π΄" | |
| def log_message(msg: str): | |
| """Append a timestamped line to the in-app log, creating the buffer if needed.""" | |
| ErrorHandler.log_info(msg) | |
| def trigger_run(): | |
| """Set a flag so we can detect button press reliably across reruns""" | |
| st.session_state['run_requested'] = True | |
| def on_sample_change(): | |
| """Read selected sample once and persist as text.""" | |
| sel = st.session_state.get("sample_select", "-- Select Sample --") | |
| if sel == "-- Select Sample --": | |
| return | |
| try: | |
| text = (Path(SAMPLE_DATA_DIR / sel).read_text(encoding="utf-8")) | |
| st.session_state["input_text"] = text | |
| st.session_state["filename"] = sel | |
| st.session_state["input_source"] = "sample" | |
| # π§ Clear previous results so right column resets immediately | |
| reset_results("New sample selected") | |
| st.session_state["status_message"] = f"π Sample '{sel}' ready for analysis" | |
| st.session_state["status_type"] = "success" | |
| except (FileNotFoundError, IOError) as e: | |
| st.session_state["status_message"] = f"β Error loading sample: {e}" | |
| st.session_state["status_type"] = "error" | |
| def on_input_mode_change(): | |
| """Reset sample when switching to Upload""" | |
| if st.session_state["input_mode"] == "Upload File": | |
| st.session_state["sample_select"] = "-- Select Sample --" | |
| st.session_state["batch_mode"] = False # Reset batch mode | |
| elif st.session_state["input_mode"] == "Sample Data": | |
| st.session_state["batch_mode"] = False # Reset batch mode | |
| # π§ Reset when switching modes to prevent stale right-column visuals | |
| reset_results("Switched input mode") | |
| def on_model_change(): | |
| """Force the right column back to init state when the model changes""" | |
| reset_results("Model changed") | |
| def reset_results(reason: str = ""): | |
| """Clear previous inference artifacts so the right column returns to initial state.""" | |
| st.session_state["inference_run_once"] = False | |
| st.session_state["x_raw"] = None | |
| st.session_state["y_raw"] = None | |
| st.session_state["y_resampled"] = None | |
| # ||== Clear batch results when resetting ==|| | |
| if "batch_results" in st.session_state: | |
| del st.session_state["batch_results"] | |
| # ||== Clear logs between runs ==|| | |
| st.session_state["log_messages"] = [] | |
| # ||== Always reset the status box ==|| | |
| st.session_state["status_message"] = ( | |
| f"βΉοΈ {reason}" | |
| if reason else "Ready to analyze polymer spectra π¬" | |
| ) | |
| st.session_state["status_type"] = "info" | |
| def reset_ephemeral_state(): | |
| """Comprehensive reset for the entire app state.""" | |
| # Define keys that should NOT be cleared by a full reset | |
| keep_keys = {"model_select", "input_mode"} | |
| for k in list(st.session_state.keys()): | |
| if k not in keep_keys: | |
| st.session_state.pop(k, None) | |
| # Re-initialize the core state after clearing | |
| init_session_state() | |
| # CRITICAL: Bump the uploader version to force a widget reset | |
| st.session_state["uploader_version"] += 1 | |
| st.session_state["current_upload_key"] = f"upload_txt_{st.session_state['uploader_version']}" | |
| st.rerun() | |
| # --- START: BUG 2 FIX (Callback Function) --- | |
| def clear_batch_results(): | |
| """Callback to clear only the batch results and the results log table.""" | |
| if "batch_results" in st.session_state: | |
| del st.session_state["batch_files"] | |
| # Also clear the persistent table from the ResultsManager utility | |
| ResultsManager.clear_results() | |
| st.rerun() | |
| # --- END: BUG 2 FIX (Callback Function) --- | |
| st.rerun() | |
| # Main app | |
| def main(): | |
| init_session_state() | |
| # Sidebar | |
| with st.sidebar: | |
| # Header | |
| st.header("AI-Driven Polymer Classification") | |
| st.caption( | |
| "Predict polymer degradation (Stable vs Weathered) from Raman spectra using validated CNN models. β v0.1") | |
| model_labels = [ | |
| f"{MODEL_CONFIG[name]['emoji']} {name}" for name in MODEL_CONFIG.keys()] | |
| selected_label = st.selectbox( | |
| "Choose AI Model", model_labels, key="model_select", on_change=on_model_change) | |
| model_choice = selected_label.split(" ", 1)[1] | |
| # ===Compact metadata directly under dropdown=== | |
| render_model_meta(model_choice) | |
| # ===Collapsed info to reduce clutter=== | |
| with st.expander("About This App", icon=":material/info:", expanded=False): | |
| st.markdown(""" | |
| AI-Driven Polymer Aging Prediction and Classification | |
| **Purpose**: Classify polymer degradation using AI | |
| **Input**: Raman spectroscopy `.txt` files | |
| **Models**: CNN architectures for binary classification | |
| **Next**: More trained CNNs in evaluation pipeline | |
| **Contributors** | |
| Dr. Sanmukh Kuppannagari (Mentor) | |
| Dr. Metin Karailyan (Mentor) | |
| Jaser Hasan (Author) | |
| **Links** | |
| [Live HF Space](https://huggingface.co/spaces/dev-jas/polymer-aging-ml) | |
| [GitHub Repository](https://github.com/KLab-AI3/ml-polymer-recycling) | |
| **Citation Figure2CNN (baseline)** | |
| Neo et al., 2023, *Resour. Conserv. Recycl.*, 188, 106718. | |
| [https://doi.org/10.1016/j.resconrec.2022.106718](https://doi.org/10.1016/j.resconrec.2022.106718) | |
| """, ) | |
| # Main content area | |
| col1, col2 = st.columns([1, 1.35], gap="small") | |
| with col1: | |
| st.markdown("##### Data Input") | |
| mode = st.radio( | |
| "Input mode", | |
| ["Upload File", "Batch Upload", "Sample Data"], | |
| key="input_mode", | |
| horizontal=True, | |
| on_change=on_input_mode_change | |
| ) | |
| # ==Upload tab== | |
| if mode == "Upload File": | |
| upload_key = st.session_state["current_upload_key"] | |
| up = st.file_uploader( | |
| "Upload Raman spectrum (.txt)", | |
| type="txt", | |
| help="Upload a text file with wavenumber and intensity columns", | |
| key=upload_key, # β versioned key | |
| ) | |
| # ==Process change immediately (no on_change; simpler & reliable)== | |
| if up is not None: | |
| raw = up.read() | |
| text = raw.decode("utf-8") if isinstance(raw, bytes) else raw | |
| # == only reparse if its a different file|source == | |
| if st.session_state.get("filename") != getattr(up, "name", None) or st.session_state.get("input_source") != "upload": | |
| st.session_state["input_text"] = text | |
| st.session_state["filename"] = getattr(up, "name", None) | |
| st.session_state["input_source"] = "upload" | |
| # Ensure single file mode | |
| st.session_state["batch_mode"] = False | |
| st.session_state["status_message"] = f"File '{st.session_state['filename']}' ready for analysis" | |
| st.session_state["status_type"] = "success" | |
| reset_results("New file uploaded") | |
| # ==Batch Upload tab== | |
| elif mode == "Batch Upload": | |
| st.session_state["batch_mode"] = True | |
| # --- START: BUG 1 & 3 FIX --- | |
| # Use a versioned key to ensure the file uploader resets properly. | |
| batch_upload_key = f"batch_upload_{st.session_state['uploader_version']}" | |
| uploaded_files = st.file_uploader( | |
| "Upload multiple Raman spectrum files (.txt)", | |
| type="txt", | |
| accept_multiple_files=True, | |
| help="Upload one or more text files with wavenumber and intensity columns.", | |
| key=batch_upload_key | |
| ) | |
| # --- END: BUG 1 & 3 FIX --- | |
| if uploaded_files: | |
| # --- START: Bug 1 Fix --- | |
| # Use a dictionary to keep only unique files based on name and size | |
| unique_files = {(file.name, file.size) | |
| : file for file in uploaded_files} | |
| unique_file_list = list(unique_files.values()) | |
| num_uploaded = len(uploaded_files) | |
| num_unique = len(unique_file_list) | |
| # Optionally, inform the user that duplicates were removed | |
| if num_uploaded > num_unique: | |
| st.info( | |
| f"βΉοΈ {num_uploaded - num_unique} duplicate file(s) were removed.") | |
| # Use the unique list | |
| st.session_state["batch_files"] = unique_file_list | |
| st.session_state["status_message"] = f"{num_unique} ready for batch analysis" | |
| st.session_state["status_type"] = "success" | |
| # --- END: Bug 1 Fix --- | |
| else: | |
| st.session_state["batch_files"] = [] | |
| # This check prevents resetting the status if files are already staged | |
| if not st.session_state.get("batch_files"): | |
| st.session_state["status_message"] = "No files selected for batch processing" | |
| st.session_state["status_type"] = "info" | |
| # ==Sample tab== | |
| elif mode == "Sample Data": | |
| st.session_state["batch_mode"] = False | |
| sample_files = get_sample_files() | |
| if sample_files: | |
| options = ["-- Select Sample --"] + \ | |
| [p.name for p in sample_files] | |
| sel = st.selectbox( | |
| "Choose sample spectrum:", | |
| options, | |
| key="sample_select", | |
| on_change=on_sample_change, | |
| ) | |
| if sel != "-- Select Sample --": | |
| st.session_state["status_message"] = f"π Sample '{sel}' ready for analysis" | |
| st.session_state["status_type"] = "success" | |
| else: | |
| st.info("No sample data available") | |
| # ==Status box== | |
| msg = st.session_state.get("status_message", "Ready") | |
| typ = st.session_state.get("status_type", "info") | |
| if typ == "success": | |
| st.success(msg) | |
| elif typ == "error": | |
| st.error(msg) | |
| else: | |
| st.info(msg) | |
| # ==Model load== | |
| model, model_loaded = load_model(model_choice) | |
| if not model_loaded: | |
| st.warning("β οΈ Model weights not available - using demo mode") | |
| # ==Ready to run if we have text (single) or files (batch) and a model==| | |
| is_batch_mode = st.session_state.get("batch_mode", False) | |
| batch_files = st.session_state.get("batch_files", []) | |
| inference_ready = False # Initialize with a default value | |
| if is_batch_mode: | |
| inference_ready = len(batch_files) > 0 and (model is not None) | |
| else: | |
| inference_ready = st.session_state.get( | |
| "input_text") is not None and (model is not None) | |
| # === Run Analysis (form submit batches state) === | |
| with st.form("analysis_form", clear_on_submit=False): | |
| submitted = st.form_submit_button( | |
| "Run Analysis", | |
| type="primary", | |
| disabled=not inference_ready, | |
| ) | |
| # Renamed for clarity and uses the robust on_click callback | |
| st.button("Reset All", on_click=reset_ephemeral_state, | |
| help="Clear all uploaded files and results.") | |
| if submitted and inference_ready: | |
| if is_batch_mode: | |
| with st.spinner(f"Processing {len(batch_files)} files ..."): | |
| try: | |
| batch_results = process_multiple_files( | |
| uploaded_files=batch_files, | |
| model_choice=model_choice, | |
| load_model_func=load_model, | |
| run_inference_func=run_inference, | |
| label_file_func=label_file | |
| ) | |
| st.session_state["batch_results"] = batch_results | |
| st.success( | |
| f"Successfully processed {len([r for r in batch_results if r.get('success', False)])}/{len(batch_files)} files") | |
| except Exception as e: | |
| st.error(f"Error during batch processing: {e}") | |
| else: | |
| try: | |
| x_raw, y_raw = parse_spectrum_data( | |
| st.session_state["input_text"]) | |
| x_resampled, y_resampled = resample_spectrum( | |
| x_raw, y_raw, TARGET_LEN) | |
| st.session_state["x_raw"] = x_raw | |
| st.session_state["y_raw"] = y_raw | |
| st.session_state["x_resampled"] = x_resampled | |
| st.session_state["y_resampled"] = y_resampled | |
| st.session_state["inference_run_once"] = True | |
| except (ValueError, TypeError) as e: | |
| st.error(f"Error processing spectrum data: {e}") | |
| st.session_state["status_message"] = f"β Error: {e}" | |
| st.session_state["status_type"] = "error" | |
| # Results column | |
| with col2: | |
| # Check if we're in batch more or have batch results | |
| is_batch_mode = st.session_state.get("batch_mode", False) | |
| has_batch_results = "batch_results" in st.session_state | |
| if is_batch_mode and has_batch_results: | |
| # Display batch results | |
| st.markdown("##### Batch Analysis Results") | |
| batch_results = st.session_state["batch_results"] | |
| display_batch_results(batch_results) | |
| # Add session results table | |
| st.markdown("---") | |
| # --- START: BUG 2 FIX (Button) --- | |
| # This button will clear all results from col2 correctly. | |
| st.button("Clear Results", on_click=clear_batch_results, | |
| key="clear_results_button") | |
| # --- END: BUG 2 FIX (Button) --- | |
| ResultsManager.display_results_table() | |
| elif st.session_state.get("inference_run_once", False) and not is_batch_mode: | |
| st.markdown("##### Analysis Results") | |
| # Get data from session state | |
| x_raw = st.session_state.get('x_raw') | |
| y_raw = st.session_state.get('y_raw') | |
| x_resampled = st.session_state.get('x_resampled') # β NEW | |
| y_resampled = st.session_state.get('y_resampled') | |
| filename = st.session_state.get('filename', 'Unknown') | |
| if all(v is not None for v in [x_raw, y_raw, y_resampled]): | |
| # ===Run inference=== | |
| if y_resampled is None: | |
| raise ValueError( | |
| "y_resampled is None. Ensure spectrum data is properly resampled before proceeding.") | |
| cache_key = hashlib.md5( | |
| f"{y_resampled.tobytes()}{model_choice}".encode()).hexdigest() | |
| prediction, logits_list, probs, inference_time, logits = run_inference( | |
| y_resampled, model_choice, _cache_key=cache_key | |
| ) | |
| if prediction is None: | |
| st.error( | |
| "β Inference failed: Model not loaded. Please check that weights are available.") | |
| st.stop() # prevents the rest of the code in this block from executing | |
| log_message( | |
| f"Inference completed in {inference_time:.2f}s, prediction: {prediction}") | |
| # ===Get ground truth=== | |
| true_label_idx = label_file(filename) | |
| true_label_str = LABEL_MAP.get( | |
| true_label_idx, "Unknown") if true_label_idx is not None else "Unknown" | |
| # ===Get prediction=== | |
| predicted_class = LABEL_MAP.get( | |
| int(prediction), f"Class {int(prediction)}") | |
| # Enhanced confidence calculation | |
| if logits is not None: | |
| # Use new softmax-based confidence | |
| probs_np, max_confidence, confidence_level, confidence_emoji = calculate_softmax_confidence( | |
| logits) | |
| confidence_desc = confidence_level | |
| else: | |
| # Fallback to legace method | |
| logit_margin = abs( | |
| (logits_list[0] - logits_list[1]) if logits_list is not None and len(logits_list) >= 2 else 0) | |
| confidence_desc, confidence_emoji = get_confidence_description( | |
| logit_margin) | |
| max_confidence = logit_margin / 10.0 # Normalize for display | |
| probs_np = np.array([]) | |
| # Store result in results manager for single file too | |
| ResultsManager.add_results( | |
| filename=filename, | |
| model_name=model_choice, | |
| prediction=int(prediction), | |
| predicted_class=predicted_class, | |
| confidence=max_confidence, | |
| logits=logits_list if logits_list else [], | |
| ground_truth=true_label_idx if true_label_idx >= 0 else None, | |
| processing_time=inference_time if inference_time is not None else 0.0, | |
| metadata={ | |
| "confidence_level": confidence_desc, | |
| "confidence_emoji": confidence_emoji | |
| } | |
| ) | |
| # ===Precompute Stats=== | |
| spec_stats = { | |
| "Original Length": len(x_raw) if x_raw is not None else 0, | |
| "Resampled Length": TARGET_LEN, | |
| "Wavenumber Range": f"{min(x_raw):.1f}-{max(x_raw):.1f} cmβ»ΒΉ" if x_raw is not None else "N/A", | |
| "Intensity Range": f"{min(y_raw):.1f}-{max(y_raw):.1f} au" if y_raw is not None else "N/A", | |
| "Confidence Bucket": confidence_desc, | |
| } | |
| model_path = MODEL_CONFIG[model_choice]["path"] | |
| mtime = os.path.getmtime( | |
| model_path) if os.path.exists(model_path) else None | |
| file_hash = ( | |
| hashlib.md5(open(model_path, 'rb').read()).hexdigest() | |
| if os.path.exists(model_path) else "N/A" | |
| ) | |
| input_tensor = torch.tensor( | |
| y_resampled, dtype=torch.float32).unsqueeze(0).unsqueeze(0) | |
| model_stats = { | |
| "Architecture": model_choice, | |
| "Model Path": model_path, | |
| "Weights Last Modified": time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(mtime)) if mtime else "N/A", | |
| "Weights Hash (md5)": file_hash, | |
| "Input Shape": list(input_tensor.shape), | |
| "Output Shape": list(logits.shape) if logits is not None else "N/A", | |
| "Inference Time": f"{inference_time:.3f}s", | |
| "Device": "CPU", | |
| "Model Loaded": model_loaded, | |
| } | |
| start_render = time.time() | |
| active_tab = st.selectbox( | |
| "View Results", | |
| ["Details", "Technical", "Explanation"], | |
| key="active_tab", # reuse the key you were managing manually | |
| ) | |
| if active_tab == "Details": | |
| # MODIFIED: Wrap the expander in a div with the 'expander-results' class | |
| st.markdown('<div class="expander-results">', | |
| unsafe_allow_html=True) | |
| with st.expander("Results", expanded=True): | |
| # Clean header with key information | |
| st.markdown("<br>**Analysis Summary**", | |
| width="content", unsafe_allow_html=True) | |
| # Streamlined header information | |
| header_col1, header_col2, header_col3 = st.columns([ | |
| 2, 2, 2], border=True) | |
| with header_col1: | |
| st.metric( | |
| label="**Sample**", | |
| value=filename, | |
| delta=None, | |
| ) | |
| with header_col2: | |
| st.metric( | |
| label="**Model**", | |
| value=model_choice.split( | |
| " ")[0], # Remove emoji | |
| delta=None | |
| ) | |
| with header_col3: | |
| st.metric( | |
| label="**Processing Time**", | |
| value=f"{inference_time:.2f}s", | |
| delta=None | |
| ) | |
| # Main classification results in clean cards | |
| st.markdown("**Classification Results**", | |
| width="content", unsafe_allow_html=True) | |
| # Primary results in a clean 3-column layout | |
| result_col1, result_col2, result_col3 = st.columns([ | |
| 1, 1, 1], border=True) | |
| with result_col1: | |
| st.metric( | |
| label="**Prediction**", | |
| value=predicted_class, | |
| delta=None | |
| ) | |
| with result_col2: | |
| confidence_icon = "π’" if max_confidence >= 0.8 else "π‘" if max_confidence >= 0.6 else "π΄" | |
| st.metric( | |
| label="**Confidence**", | |
| value=f"{confidence_icon} {max_confidence:.1%}", | |
| delta=None | |
| ) | |
| with result_col3: | |
| st.metric( | |
| label="**Ground Truth**", | |
| value=f"{true_label_str}", | |
| delta=None | |
| ) | |
| # Enhanced confidence analysis - more compact and scientific | |
| # Create a professional confidence display | |
| with st.container(border=True, height=325): | |
| st.markdown( | |
| "**Confidence Analysis**", unsafe_allow_html=True) | |
| # Function to create enhanced bullet bars | |
| def create_bullet_bar(probability, width=20, predicted=False): | |
| filled_count = int(probability * width) | |
| empty_count = width - filled_count | |
| # Use professional symbols | |
| filled_symbol = "β " # Solid block | |
| empty_symbol = "β" # Light shade | |
| # Create the bar | |
| bar = filled_symbol * filled_count + empty_symbol * empty_count | |
| # Add percentage with scientific formatting | |
| percentage = f"{probability:.1%}" | |
| # Add prediction indicator | |
| pred_marker = "β© Predicted" if predicted else "" | |
| return f"{bar} {percentage} {pred_marker}" | |
| # Get probabilities | |
| stable_prob = probs[0] | |
| weathered_prob = probs[1] | |
| is_stable_predicted = int(prediction) == 0 | |
| is_weathered_predicted = int(prediction) == 1 | |
| # Clean 2-column layout for assessment and probabilities | |
| assess_col, prob_col = st.columns( | |
| [1, 2.5], gap="small", border=True) | |
| # Left column: Assessment metrics | |
| with assess_col: | |
| st.markdown( | |
| "Assessment", unsafe_allow_html=True) | |
| # Ground truth validation | |
| if true_label_idx is not None: | |
| is_correct = predicted_class == true_label_str | |
| accuracy_icon = "β " if is_correct else "" | |
| status_text = "Correct" if is_correct else "Incorrect" | |
| st.metric( | |
| label="**Ground Truth**", | |
| value=f"{accuracy_icon} {status_text}", | |
| delta=f"{'100%' if is_correct else '0%'}" | |
| ) | |
| else: | |
| st.metric( | |
| label="**Ground Truth**", | |
| value="N/A", | |
| delta="No reference" | |
| ) | |
| # Confidence level | |
| confidence_icon = "π’" if max_confidence >= 0.8 else "π‘" if max_confidence >= 0.6 else "π΄" | |
| st.metric( | |
| label="**Confidence Level**", | |
| value=f"{confidence_icon} {confidence_desc}", | |
| delta=f"{max_confidence:.1%}" | |
| ) | |
| # Right column: Probability distribution | |
| with prob_col: | |
| st.markdown("Probability Distribution") | |
| st.markdown(f""" | |
| <div style=""> | |
| Stable (Unweathered)<br> | |
| {create_bullet_bar(stable_prob, predicted=is_stable_predicted)}<br><br> | |
| Weathered (Degraded)<br> | |
| {create_bullet_bar(weathered_prob, predicted=is_weathered_predicted)} | |
| </div> | |
| """, unsafe_allow_html=True) | |
| st.markdown( | |
| '</div>', unsafe_allow_html=True) # Close the wrapper div | |
| elif active_tab == "Technical": | |
| with st.container(): | |
| st.markdown("Technical Diagnostics") | |
| # Model performance metrics | |
| with st.container(border=True): | |
| st.markdown("##### **Model Performance**") | |
| tech_col1, tech_col2 = st.columns(2) | |
| with tech_col1: | |
| st.metric("Inference Time", | |
| f"{inference_time:.3f}s") | |
| st.metric( | |
| "Input Length", f"{len(x_raw) if x_raw is not None else 0} points") | |
| st.metric("Resampled Length", | |
| f"{TARGET_LEN} points") | |
| with tech_col2: | |
| st.metric("Model Loaded", | |
| "β Yes" if model_loaded else "β No") | |
| st.metric("Device", "CPU") | |
| st.metric("Confidence Score", | |
| f"{max_confidence:.3f}") | |
| # Raw logits display | |
| with st.container(border=True): | |
| st.markdown("##### **Raw Model Outputs (Logits)**") | |
| if logits_list is not None: | |
| logits_df = { | |
| "Class": [LABEL_MAP.get(i, f"Class {i}") for i in range(len(logits_list))], | |
| "Logit Value": [f"{score:.4f}" for score in logits_list], | |
| "Probability": [f"{prob:.4f}" for prob in probs_np] if len(probs_np) > 0 else ["N/A"] * len(logits_list) | |
| } | |
| # Display as a simple table format | |
| for i, (cls, logit, prob) in enumerate(zip(logits_df["Class"], logits_df["Logit Value"], logits_df["Probability"])): | |
| col1, col2, col3 = st.columns([2, 1, 1]) | |
| with col1: | |
| if i == prediction: | |
| st.markdown(f"**{cls}** β Predicted") | |
| else: | |
| st.markdown(cls) | |
| with col2: | |
| st.caption(f"Logit: {logit}") | |
| with col3: | |
| st.caption(f"Prob: {prob}") | |
| # Spectrum statistics in organized sections | |
| with st.container(border=True): | |
| st.markdown("##### **Spectrum Analysis**") | |
| spec_cols = st.columns(2) | |
| with spec_cols[0]: | |
| st.markdown("**Original Spectrum:**") | |
| render_kv_grid({ | |
| "Length": f"{len(x_raw) if x_raw is not None else 0} points", | |
| "Range": f"{min(x_raw):.1f} - {max(x_raw):.1f} cmβ»ΒΉ" if x_raw is not None else "N/A", | |
| "Min Intensity": f"{min(y_raw):.2e}" if y_raw is not None else "N/A", | |
| "Max Intensity": f"{max(y_raw):.2e}" if y_raw is not None else "N/A" | |
| }, ncols=1) | |
| with spec_cols[1]: | |
| st.markdown("**Processed Spectrum:**") | |
| render_kv_grid({ | |
| "Length": f"{TARGET_LEN} points", | |
| "Resampling": "Linear interpolation", | |
| "Normalization": "None", | |
| "Input Shape": f"(1, 1, {TARGET_LEN})" | |
| }, ncols=1) | |
| # Model information | |
| with st.container(border=True): | |
| st.markdown("##### **Model Information**") | |
| model_info_cols = st.columns(2) | |
| with model_info_cols[0]: | |
| render_kv_grid({ | |
| "Architecture": model_choice, | |
| "Path": MODEL_CONFIG[model_choice]["path"], | |
| "Weights Modified": time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(mtime)) if mtime else "N/A" | |
| }, ncols=1) | |
| with model_info_cols[1]: | |
| if os.path.exists(model_path): | |
| file_hash = hashlib.md5( | |
| open(model_path, 'rb').read()).hexdigest() | |
| render_kv_grid({ | |
| "Weights Hash": f"{file_hash[:16]}...", | |
| "Output Shape": f"(1, {len(LABEL_MAP)})", | |
| "Activation": "Softmax" | |
| }, ncols=1) | |
| # Debug logs (collapsed by default) | |
| with st.expander("π Debug Logs", expanded=False): | |
| log_content = "\n".join( | |
| st.session_state.get("log_messages", [])) | |
| if log_content.strip(): | |
| st.code(log_content, language="text") | |
| else: | |
| st.caption("No debug logs available") | |
| elif active_tab == "Explanation": | |
| with st.container(): | |
| st.markdown("### π Methodology & Interpretation") | |
| # Process explanation | |
| st.markdown("Analysis Pipeline") | |
| process_steps = [ | |
| "π **Data Upload**: Raman spectrum file loaded and validated", | |
| "π **Preprocessing**: Spectrum parsed and resampled to 500 data points using linear interpolation", | |
| "π§ **AI Inference**: Convolutional Neural Network analyzes spectral patterns and molecular signatures", | |
| "π **Classification**: Binary prediction with confidence scoring using softmax probabilities", | |
| "β **Validation**: Ground truth comparison (when available from filename)" | |
| ] | |
| for step in process_steps: | |
| st.markdown(step) | |
| st.markdown("---") | |
| # Model interpretation | |
| st.markdown("#### Scientific Interpretation") | |
| interp_col1, interp_col2 = st.columns(2) | |
| with interp_col1: | |
| st.markdown("**Stable (Unweathered) Polymers:**") | |
| st.info(""" | |
| - Well-preserved molecular structure | |
| - Minimal oxidative degradation | |
| - Characteristic Raman peaks intact | |
| - Suitable for recycling applications | |
| """) | |
| with interp_col2: | |
| st.markdown("**Weathered (Degraded) Polymers:**") | |
| st.warning(""" | |
| - Oxidized molecular bonds | |
| - Surface degradation present | |
| - Altered spectral signatures | |
| - May require additional processing | |
| """) | |
| st.markdown("---") | |
| # Applications | |
| st.markdown("#### Research Applications") | |
| applications = [ | |
| "π¬ **Material Science**: Polymer degradation studies", | |
| "β»οΈ **Recycling Research**: Viability assessment for circular economy", | |
| "π± **Environmental Science**: Microplastic weathering analysis", | |
| "π **Quality Control**: Manufacturing process monitoring", | |
| "π **Longevity Studies**: Material aging prediction" | |
| ] | |
| for app in applications: | |
| st.markdown(app) | |
| # Technical details | |
| # MODIFIED: Wrap the expander in a div with the 'expander-advanced' class | |
| st.markdown('<div class="expander-advanced">', | |
| unsafe_allow_html=True) | |
| with st.expander("π§ Technical Details", expanded=False): | |
| st.markdown(""" | |
| **Model Architecture:** | |
| - Convolutional layers for feature extraction | |
| - Residual connections for gradient flow | |
| - Fully connected layers for classification | |
| - Softmax activation for probability distribution | |
| **Performance Metrics:** | |
| - Accuracy: 94.8-96.2% on validation set | |
| - F1-Score: 94.3-95.9% across classes | |
| - Robust to spectral noise and baseline variations | |
| **Data Processing:** | |
| - Input: Raman spectra (any length) | |
| - Resampling: Linear interpolation to 500 points | |
| - Normalization: None (preserves intensity relationships) | |
| """) | |
| st.markdown( | |
| '</div>', unsafe_allow_html=True) # Close the wrapper div | |
| render_time = time.time() - start_render | |
| log_message( | |
| f"col2 rendered in {render_time:.2f}s, active tab: {active_tab}") | |
| with st.expander("Spectrum Preprocessing Results", expanded=False): | |
| st.caption("<br>Spectral Analysis", unsafe_allow_html=True) | |
| # Add some context about the preprocessing | |
| st.markdown(""" | |
| **Preprocessing Overview:** | |
| - **Original Spectrum**: Raw Raman data as uploaded | |
| - **Resampled Spectrum**: Data interpolated to 500 points for model input | |
| - **Purpose**: Ensures consistent input dimensions for neural network | |
| """) | |
| # Create and display plot | |
| cache_key = hashlib.md5( | |
| f"{(x_raw.tobytes() if x_raw is not None else b'')}" | |
| f"{(y_raw.tobytes() if y_raw is not None else b'')}" | |
| f"{(x_resampled.tobytes() if x_resampled is not None else b'')}" | |
| f"{(y_resampled.tobytes() if y_resampled is not None else b'')}".encode() | |
| ).hexdigest() | |
| spectrum_plot = create_spectrum_plot( | |
| x_raw, y_raw, x_resampled, y_resampled, _cache_key=cache_key) | |
| st.image( | |
| spectrum_plot, caption="Raman Spectrum: Raw vs Processed", use_container_width=True) | |
| else: | |
| st.error( | |
| "β Missing spectrum data. Please upload a file and run analysis.") | |
| else: | |
| # ===Getting Started=== | |
| st.markdown(""" | |
| ##### How to Get Started | |
| 1. **Select an AI Model:** Use the dropdown menu in the sidebar to choose a model. | |
| 2. **Provide Your Data:** Select one of the three input modes: | |
| - **Upload File:** Analyze a single spectrum. | |
| - **Batch Upload:** Process multiple files at once. | |
| - **Sample Data:** Explore functionality with pre-loaded examples. | |
| 3. **Run Analysis:** Click the "Run Analysis" button to generate the classification results. | |
| --- | |
| ##### Supported Data Format | |
| - **File Type:** Plain text (`.txt`) | |
| - **Content:** Must contain two columns: `wavenumber` and `intensity`. | |
| - **Separators:** Values can be separated by spaces or commas. | |
| - **Preprocessing:** Your spectrum will be automatically resampled to 500 data points to match the model's input requirements. | |
| --- | |
| ##### Example Applications | |
| - π¬ Research on polymer degradation | |
| - β»οΈ Recycling feasibility assessment | |
| - π± Sustainability impact studies | |
| - π Quality control in manufacturing | |
| """) | |
| # Run the application | |
| main() | |