Spaces:
Sleeping
Sleeping
| from models.resnet_cnn import ResNet1D | |
| from models.figure2_cnn import Figure2CNN | |
| import hashlib | |
| import gc | |
| import time | |
| import io | |
| from PIL import Image | |
| import matplotlib.pyplot as plt | |
| import matplotlib | |
| import numpy as np | |
| import torch | |
| import torch.nn.functional as F | |
| import streamlit as st | |
| import os | |
| import sys | |
| from pathlib import Path | |
| # Ensure 'utils' directory is in the Python path | |
| utils_path = Path(__file__).resolve().parent / "utils" | |
| if utils_path.is_dir() and str(utils_path) not in sys.path: | |
| sys.path.append(str(utils_path)) | |
| matplotlib.use("Agg") # ensure headless rendering in Spaces | |
| # Import local modules | |
| from utils.preprocessing import resample_spectrum | |
| KEEP_KEYS = { | |
| # === global UI context we want to keep after "Reset" === | |
| "model_select", # sidebar model key | |
| "input_mode", # radio for Upload|Sample | |
| "uploader_version", # version counter for file uploader | |
| "input_registry", # radio controlling Upload vs Sample | |
| } | |
| # Configuration | |
| st.set_page_config( | |
| page_title="ML Polymer Classification", | |
| page_icon="π¬", | |
| layout="wide", | |
| initial_sidebar_state="expanded" | |
| ) | |
| # Stabilize tab panel height on HF Spaces to prevent visible column jitter. | |
| # This sets a minimum height for the content area under the tab headers. | |
| st.markdown(""" | |
| <style> | |
| /* Tabs content area: the sibling after the tablist */ | |
| div[data-testid="stTabs"] > div[role="tablist"] + div { min-height: 420px;} | |
| </style> | |
| """, unsafe_allow_html=True) | |
| # Constants | |
| TARGET_LEN = 500 | |
| SAMPLE_DATA_DIR = Path("sample_data") | |
| # Prefer env var, else 'model_weights' if present; else canonical 'outputs' | |
| MODEL_WEIGHTS_DIR = ( | |
| os.getenv("WEIGHTS_DIR") | |
| or ("model_weights" if os.path.isdir("model_weights") else "outputs") | |
| ) | |
| # Model configuration | |
| MODEL_CONFIG = { | |
| "Figure2CNN (Baseline)": { | |
| "class": Figure2CNN, | |
| "path": f"{MODEL_WEIGHTS_DIR}/figure2_model.pth", | |
| "emoji": "π¬", | |
| "description": "Baseline CNN with standard filters", | |
| "accuracy": "94.80%", | |
| "f1": "94.30%" | |
| }, | |
| "ResNet1D (Advanced)": { | |
| "class": ResNet1D, | |
| "path": f"{MODEL_WEIGHTS_DIR}/resnet_model.pth", | |
| "emoji": "π§ ", | |
| "description": "Residual CNN with deeper feature learning", | |
| "accuracy": "96.20%", | |
| "f1": "95.90%" | |
| } | |
| } | |
| # Label mapping | |
| LABEL_MAP = {0: "Stable (Unweathered)", 1: "Weathered (Degraded)"} | |
| # === UTILITY FUNCTIONS === | |
| def init_session_state(): | |
| defaults = { | |
| "status_message": "Ready to analyze polymer spectra π¬", | |
| "status_type": "info", | |
| "input_text": None, | |
| "filename": None, | |
| "input_source": None, # "upload" or "sample" | |
| "sample_select": "-- Select Sample --", | |
| "input_mode": "Upload File", # controls which pane is visible | |
| "inference_run_once": False, | |
| "x_raw": None, "y_raw": None, "y_resampled": None, | |
| "log_messages": [], | |
| "uploader_version": 0, | |
| "current_upload_key": "upload_txt_0", | |
| } | |
| for k, v in defaults.items(): | |
| st.session_state.setdefault(k, v) | |
| for key, default_value in defaults.items(): | |
| if key not in st.session_state: | |
| st.session_state[key] = default_value | |
| def label_file(filename: str) -> int: | |
| """Extract label from filename based on naming convention""" | |
| name = Path(filename).name.lower() | |
| if name.startswith("sta"): | |
| return 0 | |
| elif name.startswith("wea"): | |
| return 1 | |
| else: | |
| # Return None for unknown patterns instead of raising error | |
| return -1 # Default value for unknown patterns | |
| def load_state_dict(_mtime, model_path): | |
| """Load state dict with mtime in cache key to detect file changes""" | |
| try: | |
| return torch.load(model_path, map_location="cpu", weights_only=True) | |
| except (FileNotFoundError, RuntimeError) as e: | |
| st.warning(f"Error loading state dict: {e}") | |
| return None | |
| def load_model(model_name): | |
| """Load and cache the specified model with error handling""" | |
| try: | |
| config = MODEL_CONFIG[model_name] | |
| model_class = config["class"] | |
| model_path = config["path"] | |
| # Initialize model | |
| model = model_class(input_length=TARGET_LEN) | |
| # Check if model file exists | |
| if not os.path.exists(model_path): | |
| st.warning(f"β οΈ Model weights not found: {model_path}") | |
| st.info("Using randomly initialized model for demonstration purposes.") | |
| return model, False | |
| # Get mtime for cache invalidation | |
| mtime = os.path.getmtime(model_path) | |
| # Load weights | |
| state_dict = load_state_dict(mtime, model_path) | |
| if state_dict: | |
| model.load_state_dict(state_dict, strict=True) | |
| if model is None: | |
| raise ValueError( | |
| "Model is not loaded. Please check the model configuration or weights.") | |
| model.eval() | |
| return model, True | |
| else: | |
| return model, False | |
| except (FileNotFoundError, KeyError) as e: | |
| st.error(f"β Error loading model {model_name}: {str(e)}") | |
| return None, False | |
| def cleanup_memory(): | |
| """Clean up memory after inference""" | |
| gc.collect() | |
| if torch.cuda.is_available(): | |
| torch.cuda.empty_cache() | |
| def get_sample_files(): | |
| """Get list of sample files if available""" | |
| sample_dir = Path(SAMPLE_DATA_DIR) | |
| if sample_dir.exists(): | |
| return sorted(list(sample_dir.glob("*.txt"))) | |
| return [] | |
| def parse_spectrum_data(raw_text): | |
| """Parse spectrum data from text with robust error handling and validation""" | |
| x_vals, y_vals = [], [] | |
| for line in raw_text.splitlines(): | |
| line = line.strip() | |
| if not line or line.startswith('#'): # Skip empty lines and comments | |
| continue | |
| try: | |
| # Handle different separators | |
| parts = line.replace(",", " ").split() | |
| numbers = [p for p in parts if p.replace('.', '', 1).replace( | |
| '-', '', 1).replace('+', '', 1).isdigit()] | |
| if len(numbers) >= 2: | |
| x, y = float(numbers[0]), float(numbers[1]) | |
| x_vals.append(x) | |
| y_vals.append(y) | |
| except ValueError: | |
| # Skip problematic lines but don't fail completely | |
| continue | |
| if len(x_vals) < 10: # Minimum reasonable spectrum length | |
| raise ValueError( | |
| f"Insufficient data points: {len(x_vals)}. Need at least 10 points.") | |
| x = np.array(x_vals) | |
| y = np.array(y_vals) | |
| # Check for NaNs | |
| if np.any(np.isnan(x)) or np.any(np.isnan(y)): | |
| raise ValueError("Input data contains NaN values") | |
| # Check monotonic increasing x | |
| if not np.all(np.diff(x) > 0): | |
| raise ValueError("Wavenumbers must be strictly increasing") | |
| # Check reasonable range for Raman spectroscopy | |
| if min(x) < 0 or max(x) > 10000 or (max(x) - min(x)) < 100: | |
| raise ValueError( | |
| f"Invalid wavenumber range: {min(x)} - {max(x)}. Expected ~400-4000 cmβ»ΒΉ with span >100") | |
| return x, y | |
| def create_spectrum_plot(x_raw, y_raw, x_resampled, y_resampled): | |
| """Create spectrum visualization plot""" | |
| fig, ax = plt.subplots(1, 2, figsize=(13, 5), dpi=100) | |
| # == Raw spectrum == | |
| ax[0].plot(x_raw, y_raw, label="Raw", color="dimgray", linewidth=1) | |
| ax[0].set_title("Raw Input Spectrum") | |
| ax[0].set_xlabel("Wavenumber (cmβ»ΒΉ)") | |
| ax[0].set_ylabel("Intensity") | |
| ax[0].grid(True, alpha=0.3) | |
| ax[0].legend() | |
| # == Resampled spectrum == | |
| ax[1].plot(x_resampled, y_resampled, label="Resampled", color="steelblue", linewidth=1) | |
| ax[1].set_title(f"Resampled ({len(y_resampled)} points)") | |
| ax[1].set_xlabel("Wavenumber (cmβ»ΒΉ)") | |
| ax[1].set_ylabel("Intensity") | |
| ax[1].grid(True, alpha=0.3) | |
| ax[1].legend() | |
| plt.tight_layout() | |
| # == Convert to image == | |
| buf = io.BytesIO() | |
| plt.savefig(buf, format='png', bbox_inches='tight', dpi=100) | |
| buf.seek(0) | |
| plt.close(fig) # Prevent memory leaks | |
| return Image.open(buf) | |
| def render_confidence_bar(probabilities, class_labels): | |
| bar = lambda p: "β" * int(p * 20) | |
| for label, prob in zip(class_labels, probabilities): | |
| st.write(f"**{label}**: {bar(prob)} {prob*100:.1f}%") | |
| def get_confidence_description(logit_margin): | |
| """Get human-readable confidence description""" | |
| if logit_margin > 1000: | |
| return "VERY HIGH", "π’" | |
| elif logit_margin > 250: | |
| return "HIGH", "π‘" | |
| elif logit_margin > 100: | |
| return "MODERATE", "π " | |
| else: | |
| return "LOW", "π΄" | |
| def log_message(msg: str): | |
| """Append a timestamped line to the in-app log, creating the buffer if needed.""" | |
| if "log_messages" not in st.session_state or st.session_state["log_messages"] is None: | |
| st.session_state["log_messages"] = [] | |
| st.session_state["log_messages"].append( | |
| f"[{time.strftime('%Y-%m-%d %H:%M:%S')}] {msg}" | |
| ) | |
| def trigger_run(): | |
| """Set a flag so we can detect button press reliably across reruns""" | |
| st.session_state['run_requested'] = True | |
| def on_sample_change(): | |
| """Read selected sample once and persist as text.""" | |
| sel = st.session_state.get("sample_select", "-- Select Sample --") | |
| if sel == "-- Select Sample --": | |
| return | |
| try: | |
| text = (Path(SAMPLE_DATA_DIR / sel).read_text(encoding="utf-8")) | |
| st.session_state["input_text"] = text | |
| st.session_state["filename"] = sel | |
| st.session_state["input_source"] = "sample" | |
| # π§ Clear previous results so right column resets immediately | |
| reset_results("New sample selected") | |
| st.session_state["status_message"] = f"π Sample '{sel}' ready for analysis" | |
| st.session_state["status_type"] = "success" | |
| except (FileNotFoundError, IOError) as e: | |
| st.session_state["status_message"] = f"β Error loading sample: {e}" | |
| st.session_state["status_type"] = "error" | |
| def on_input_mode_change(): | |
| """Reset sample when switching to Upload""" | |
| if st.session_state["input_mode"] == "Upload File": | |
| st.session_state["sample_select"] = "-- Select Sample --" | |
| # π§ Reset when switching modes to prevent stale right-column visuals | |
| reset_results("Switched input mode") | |
| def on_model_change(): | |
| """Force the right column back to init state when the model changes""" | |
| reset_results("Model changed") | |
| def reset_results(reason: str = ""): | |
| """Clear previous inference artifacts so the right column returns to initial state.""" | |
| st.session_state["inference_run_once"] = False | |
| st.session_state["x_raw"] = None | |
| st.session_state["y_raw"] = None | |
| st.session_state["y_resampled"] = None | |
| # ||== Clear logs between runs ==|| | |
| st.session_state["log_messages"] = [] | |
| # ||== Always reset the status box ==|| | |
| st.session_state["status_message"] = ( | |
| f"βΉοΈ {reason}" | |
| if reason else "Ready to analyze polymer spectra π¬" | |
| ) | |
| st.session_state["status_type"] = "info" | |
| def reset_ephemeral_state(): | |
| # === remove everything except KEPT global UI context === | |
| for k in list(st.session_state.keys()): | |
| if k not in KEEP_KEYS: | |
| st.session_state.pop(k, None) | |
| # == bump the uploader version β new widget instance with empty value == | |
| st.session_state["uploader_version"] += 1 | |
| st.session_state["current_upload_key"] = f"upload_txt_{st.session_state['uploader_version']}" | |
| # == reseed other emphemeral state == | |
| st.session_state["input_text"] = None | |
| st.session_state["filename"] = None | |
| st.session_state["input_source"] = None | |
| st.session_state["sample_select"] = "-- Select Sample --" | |
| # == return the UI to a clean state == | |
| st.session_state["inference_run_once"] = False | |
| st.session_state["x_raw"] = None | |
| st.session_state["y_raw"] = None | |
| st.session_state["y_resampled"] = None | |
| st.session_state["log_messages"] = [] | |
| st.session_state["status_message"] = "Ready to analyze polymer spectra π¬" | |
| st.session_state["status_type"] = "info" | |
| st.rerun() | |
| def plot_confidence_bar(probabilities: list[float], class_labels: list[str]) -> None: | |
| """Renders a horizontal bar chart of prediction confidences per class.""" | |
| fig, ax = plt.subplots(figsize=(4, 1.5)) | |
| bars = ax.barh(class_labels, probabilities, color=[ | |
| "green" if i == np.argmax(probabilities) else "gray" | |
| for i in range(len(probabilities)) | |
| ]) | |
| ax.set_xlabel("Confidence") | |
| ax.set_title("Prediction Confidence") | |
| ax.xaxis.set_ticks([0, 0.5, 1.0]) | |
| ax.set_xlim(0, 1.0) | |
| for i, (label, prob) in enumerate(zip(class_labels, probabilities)): | |
| ax.text(prob + 0.01, i, f"{prob*100:.1f}%", va='center', fontsize=8) | |
| st.pyplot(fig) | |
| # Main app | |
| def main(): | |
| init_session_state() | |
| # Header | |
| st.title("π¬ AI-Driven Polymer Classification") | |
| st.markdown( | |
| "**Predict polymer degradation states using Raman spectroscopy and deep learning**") | |
| st.info( | |
| "**Prototype Notice:** v0.1 Raman-only. " | |
| "Multi-model CNN evaluation in progress. " | |
| "FTIR support planned.", | |
| icon="β‘" | |
| ) | |
| # Sidebar | |
| with st.sidebar: | |
| st.header("βΉοΈ About This App") | |
| st.sidebar.markdown(""" | |
| AI-Driven Polymer Aging Prediction and Classification | |
| π― **Purpose**: Classify polymer degradation using AI | |
| π **Input**: Raman spectroscopy `.txt` files | |
| π§ **Models**: CNN architectures for binary classification | |
| πΎ **Current**: Figure2CNN (baseline) | |
| π **Next**: More trained CNNs in evaluation pipeline | |
| --- | |
| **Team** | |
| Dr. Sanmukh Kuppannagari (Mentor) | |
| Dr. Metin Karailyan (Mentor) | |
| π¨βπ» Jaser Hasan (Author) | |
| --- | |
| **Links** | |
| π [Live HF Space](https://huggingface.co/spaces/dev-jas/polymer-aging-ml) | |
| π [GitHub Repository](https://github.com/KLab-AI3/ml-polymer-recycling) | |
| --- | |
| **Model Credit** | |
| Baseline model inspired by *Figure 2 CNN* from: | |
| > Neo, E.R.K., Low, J.S.C., Goodship, V., Debattista, K. (2023). | |
| > *Deep learning for chemometric analysis of plastic spectral data from infrared and Raman databases*. | |
| > _Resources, Conservation & Recycling_, **188**, 106718. | |
| [https://doi.org/10.1016/j.resconrec.2022.106718](https://doi.org/10.1016/j.resconrec.2022.106718) | |
| """) | |
| st.markdown("---") | |
| # Model selection | |
| st.subheader("π§ Model Selection") | |
| model_labels = [ | |
| f"{MODEL_CONFIG[name]['emoji']} {name}" for name in MODEL_CONFIG.keys()] | |
| selected_label = st.selectbox("Choose AI model:", model_labels, | |
| key="model_select", on_change=on_model_change) | |
| model_choice = selected_label.split(" ", 1)[1] | |
| # Model info | |
| config = MODEL_CONFIG[model_choice] | |
| st.markdown(f""" | |
| **π {config['emoji']} Model Details** | |
| *{config['description']}* | |
| - **Accuracy**: `{config['accuracy']}` | |
| - **F1 Score**: `{config['f1']}` | |
| """) | |
| # Main content area | |
| col1, col2 = st.columns([1, 1.5], gap="large") | |
| with col1: | |
| st.subheader("π Data Input") | |
| mode = st.radio( | |
| "Input mode", | |
| ["Upload File", "Sample Data"], | |
| key="input_mode", | |
| horizontal=True, | |
| on_change=on_input_mode_change | |
| ) | |
| # ---- Upload tab ---- | |
| if mode == "Upload File": | |
| upload_key = st.session_state["current_upload_key"] | |
| up = st.file_uploader( | |
| "Upload Raman spectrum (.txt)", | |
| type="txt", | |
| help="Upload a text file with wavenumber and intensity columns", | |
| key=upload_key, # β versioned key | |
| ) | |
| # == process change immediately (no on_change; simpler & reliable) == | |
| if up is not None: | |
| raw = up.read() | |
| text = raw.decode("utf-8") if isinstance(raw, bytes) else raw | |
| # == only reparse if its a different file|source == | |
| if st.session_state.get("filename") != getattr(up, "name", None) or st.session_state.get("input_source") != "upload": | |
| st.session_state["input_text"] = text | |
| st.session_state["filename"] = getattr(up, "name", "uploaded.txt") | |
| st.session_state["input_source"] = "upload" | |
| # == clear right column immediately == | |
| reset_results("New file selected") | |
| st.session_state["status_message"] = f"π File '{st.session_state['filename']}' ready for analysis" | |
| st.session_state["status_type"] = "success" | |
| if up: | |
| st.success(f"β Loaded: {up.name}") | |
| # ---- Sample tab ---- | |
| else: | |
| sample_files = get_sample_files() | |
| if sample_files: | |
| options = ["-- Select Sample --"] + \ | |
| [p.name for p in sample_files] | |
| sel = st.selectbox( | |
| "Choose sample spectrum:", | |
| options, | |
| key="sample_select", | |
| on_change=on_sample_change, # <-- critical | |
| ) | |
| if sel != "-- Select Sample --": | |
| st.success(f"β Loaded sample: {sel}") | |
| else: | |
| st.info("No sample data available") | |
| # ---- Status box ---- | |
| st.subheader("π¦ Status") | |
| msg = st.session_state.get("status_message", "Ready") | |
| typ = st.session_state.get("status_type", "info") | |
| if typ == "success": | |
| st.success(msg) | |
| elif typ == "error": | |
| st.error(msg) | |
| else: | |
| st.info(msg) | |
| # ---- Model load ---- | |
| model, model_loaded = load_model(model_choice) | |
| if not model_loaded: | |
| st.warning("β οΈ Model weights not available - using demo mode") | |
| # Ready to run if we have text and a model | |
| inference_ready = bool(st.session_state.get( | |
| "input_text")) and (model is not None) | |
| # === Run Analysis (form submit batches state) === | |
| with st.form("analysis_form", clear_on_submit=False): | |
| submitted = st.form_submit_button( | |
| "βΆοΈ Run Analysis", | |
| type="primary", | |
| disabled=not inference_ready, | |
| ) | |
| if st.button("Reset", help="Clear current file(s), plots, and results"): | |
| reset_ephemeral_state() | |
| if submitted and inference_ready: | |
| # parse β preprocess β predict β render | |
| # Handles the submission of the analysis form and performs spectrum data processing | |
| try: | |
| raw_text = st.session_state["input_text"] | |
| filename = st.session_state.get("filename") or "unknown.txt" | |
| # Parse | |
| with st.spinner("Parsing spectrum data..."): | |
| x_raw, y_raw = parse_spectrum_data(raw_text) | |
| # Resample | |
| with st.spinner("Resampling spectrum..."): | |
| # ===Resample Unpack=== | |
| r1, r2 = resample_spectrum(x_raw, y_raw, TARGET_LEN) | |
| def _is_strictly_increasing(a): | |
| try: | |
| a = np.asarray(a) | |
| return a.ndim == 1 and a.size >= 2 and np.all(np.diff(a) > 0) | |
| except Exception: | |
| return False | |
| if _is_strictly_increasing(r1) and not _is_strictly_increasing(r2): | |
| x_resampled, y_resampled = np.asarray(r1), np.asarray(r2) | |
| elif _is_strictly_increasing(r2) and not _is_strictly_increasing(r1): | |
| x_resampled, y_resampled = np.asarray(r2), np.asarray(r1) | |
| else: | |
| # == Ambigous; assume (x, y) and log | |
| x_resampled, y_resampled = np.asarray(r1), np.asarray(r2) | |
| log_message("Resample outputs ambigous; assumed (x, y).") | |
| # ===Persists for plotting + inference=== | |
| st.session_state["x_raw"] = x_raw | |
| st.session_state["y_raw"] = y_raw | |
| st.session_state["x_resampled"] = x_resampled # β-- NEW | |
| st.session_state["y_resampled"] = y_resampled | |
| # Persist results (drives right column) | |
| st.session_state["x_raw"] = x_raw | |
| st.session_state["y_raw"] = y_raw | |
| st.session_state["y_resampled"] = y_resampled | |
| st.session_state["inference_run_once"] = True | |
| st.session_state["status_message"] = f"π Analysis completed for: {filename}" | |
| st.session_state["status_type"] = "success" | |
| st.rerun() | |
| except (ValueError, TypeError) as e: | |
| st.error(f"β Analysis failed: {e}") | |
| st.session_state["status_message"] = f"β Error: {e}" | |
| st.session_state["status_type"] = "error" | |
| # Results column | |
| with col2: | |
| if st.session_state.get("inference_run_once", False): | |
| st.subheader("π Analysis Results") | |
| # Get data from session state | |
| x_raw = st.session_state.get('x_raw') | |
| y_raw = st.session_state.get('y_raw') | |
| x_resampled = st.session_state.get('x_resampled') # β NEW | |
| y_resampled = st.session_state.get('y_resampled') | |
| filename = st.session_state.get('filename', 'Unknown') | |
| if all(v is not None for v in [x_raw, y_raw, y_resampled]): | |
| # Create and display plot | |
| try: | |
| spectrum_plot = create_spectrum_plot(x_raw, y_raw, x_resampled, y_resampled) | |
| st.image( | |
| spectrum_plot, caption="Spectrum Preprocessing Results", use_container_width=True) | |
| except (ValueError, RuntimeError, TypeError) as e: | |
| st.warning(f"Could not generate plot: {e}") | |
| log_message(f"Plot generation error: {e}") | |
| # Run inference | |
| try: | |
| with st.spinner("Running AI inference..."): | |
| start_time = time.time() | |
| # Prepare input tensor | |
| input_tensor = torch.tensor( | |
| y_resampled, dtype=torch.float32).unsqueeze(0).unsqueeze(0) | |
| # Run inference | |
| model.eval() | |
| with torch.no_grad(): | |
| if model is None: | |
| raise ValueError( | |
| "Model is not loaded. Please check the model configuration or weights.") | |
| logits = model(input_tensor) | |
| prediction = torch.argmax(logits, dim=1).item() | |
| logits_list = logits.detach().numpy().tolist()[0] | |
| probs = F.softmax(logits.detach(), dim=1).cpu().numpy().flatten() | |
| inference_time = time.time() - start_time | |
| log_message( | |
| f"Inference completed in {inference_time:.2f}s, prediction: {prediction}") | |
| # Clean up memory | |
| cleanup_memory() | |
| # Get ground truth if available | |
| true_label_idx = label_file(filename) | |
| true_label_str = LABEL_MAP.get( | |
| true_label_idx, "Unknown") if true_label_idx is not None else "Unknown" | |
| # Get prediction | |
| predicted_class = LABEL_MAP.get( | |
| int(prediction), f"Class {int(prediction)}") | |
| # Calculate confidence metrics | |
| logit_margin = abs( | |
| logits_list[0] - logits_list[1]) if len(logits_list) >= 2 else 0 | |
| confidence_desc, confidence_emoji = get_confidence_description( | |
| logit_margin) | |
| # Display results | |
| st.markdown("### π― Prediction Results") | |
| # Main prediction | |
| st.markdown(f""" | |
| **π¬ Sample**: `{filename}` | |
| **π§ Model**: `{model_choice}` | |
| **β±οΈ Processing Time**: `{inference_time:.2f}s` | |
| """) | |
| # Prediction box | |
| if predicted_class == "Stable (Unweathered)": | |
| st.success(f"π’ **Prediction**: {predicted_class}") | |
| else: | |
| st.warning(f"π‘ **Prediction**: {predicted_class}") | |
| # Confidence | |
| st.markdown( | |
| f"**{confidence_emoji} Confidence**: {confidence_desc} (margin: {logit_margin:.1f})") | |
| # Ground truth comparison | |
| if true_label_idx is not None: | |
| if predicted_class == true_label_str: | |
| st.success( | |
| f"β **Ground Truth**: {true_label_str} - **Correct!**") | |
| else: | |
| st.error( | |
| f"β **Ground Truth**: {true_label_str} - **Incorrect**") | |
| else: | |
| st.info( | |
| "βΉοΈ **Ground Truth**: Unknown (filename doesn't follow naming convention)") | |
| # ===display confidence results=== | |
| class_labels = ["Stable", "Weathered"] | |
| plot_confidence_bar(probabilities=probs.tolist(), class_labels=class_labels) | |
| # ===Detailed results tabs=== | |
| tab1, tab2, tab3 = st.tabs( | |
| ["π Details", "π¬ Technical", "π Explanation"]) | |
| with tab1: | |
| st.markdown("**Model Output (Logits)**") | |
| for i, score in enumerate(logits_list): | |
| label = LABEL_MAP.get(i, f"Class {i}") | |
| st.metric(label, f"{score:.2f}") | |
| st.markdown("**Spectrum Statistics**") | |
| st.json({ | |
| "Original Length": len(x_raw) if x_raw is not None else 0, | |
| "Resampled Length": TARGET_LEN, | |
| "Wavenumber Range": f"{min(x_raw):.1f} - {max(x_raw):.1f} cmβ»ΒΉ" if x_raw is not None else "N/A", | |
| "Intensity Range": f"{min(y_raw):.1f} - {max(y_raw):.1f}" if y_raw is not None else "N/A", | |
| "Model Confidence": confidence_desc | |
| }) | |
| with tab2: | |
| st.markdown("**Technical Information**") | |
| model_path = MODEL_CONFIG[model_choice]["path"] | |
| mtime = os.path.getmtime(model_path) if os.path.exists( | |
| model_path) else "N/A" | |
| file_hash = hashlib.md5(open(model_path, 'rb').read( | |
| )).hexdigest() if os.path.exists(model_path) else "N/A" | |
| st.json({ | |
| "Model Architecture": model_choice, | |
| "Model Path": model_path, | |
| "Weights Last Modified": time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(mtime)) if mtime != "N/A" else "N/A", | |
| "Weights Hash": file_hash, | |
| "Input Shape": list(input_tensor.shape), | |
| "Output Shape": list(logits.shape), | |
| "Inference Time": f"{inference_time:.3f}s", | |
| "Device": "CPU", | |
| "Model Loaded": model_loaded | |
| }) | |
| if not model_loaded: | |
| st.warning( | |
| "β οΈ Demo mode: Using randomly initialized weights") | |
| # Debug log | |
| st.markdown("**Debug Log**") | |
| st.text_area("Logs", "\n".join( | |
| st.session_state.get("log_messages", [])), height=200) | |
| try: | |
| resampler_mod = getattr(resample_spectrum, "__module__", "unknown") | |
| resampler_doc = getattr(resample_spectrum, "__doc__", None) | |
| resampler_doc = resampler_doc.splitlines()[0] if isinstance(resampler_doc, str) and resampler_doc else "no doc" | |
| y_rs = st.session_state.get("y_resampled", None) | |
| diag = {} | |
| if y_rs is not None: | |
| arr = np.asarray(y_rs) | |
| diag = { | |
| "y_resampled_len": int(arr.size), | |
| "y_resampled_min": float(np.min(arr)) if arr.size else None, | |
| "y_resampled_max": float(np.max(arr)) if arr.size else None, | |
| "y_resampled_ptp": float(np.ptp(arr)) if arr.size else None, | |
| "y_resampled_unique": int(np.unique(arr).size) if arr.size else None, | |
| "y_resampled_all_equal": bool(np.ptp(arr) == 0.0) if arr.size else None, | |
| } | |
| st.markdown("**Resampler Info") | |
| st.json({ | |
| "module": resampler_mod, | |
| "doc": resampler_doc, | |
| **({"y_resampled_stats": diag} if diag else {}) | |
| }) | |
| except Exception as _e: | |
| st.warning(f"Diagnostics skipped: {_e}") | |
| with tab3: | |
| st.markdown(""" | |
| **π Analysis Process** | |
| 1. **Data Upload**: Raman spectrum file loaded | |
| 2. **Preprocessing**: Data parsed and resampled to 500 points | |
| 3. **AI Inference**: CNN model analyzes spectral patterns | |
| 4. **Classification**: Binary prediction with confidence scores | |
| **π§ Model Interpretation** | |
| The AI model identifies spectral features indicative of: | |
| - **Stable polymers**: Well-preserved molecular structure | |
| - **Weathered polymers**: Degraded/oxidized molecular bonds | |
| **π― Applications** | |
| - Material longevity assessment | |
| - Recycling viability evaluation | |
| - Quality control in manufacturing | |
| - Environmental impact studies | |
| """) | |
| except (ValueError, RuntimeError) as e: | |
| st.error(f"β Inference failed: {str(e)}") | |
| log_message(f"Inference error: {str(e)}") | |
| else: | |
| st.error( | |
| "β Missing spectrum data. Please upload a file and run analysis.") | |
| else: | |
| # Welcome message | |
| st.markdown(""" | |
| ### π Welcome to AI Polymer Classification | |
| **Get started by:** | |
| 1. π§ Select an AI model in the sidebar | |
| 2. π Upload a Raman spectrum file or choose a sample | |
| 3. βΆοΈ Click "Run Analysis" to get predictions | |
| **Supported formats:** | |
| - Text files (.txt) with wavenumber and intensity columns | |
| - Space or comma-separated values | |
| - Any length (automatically resampled to 500 points) | |
| **Example applications:** | |
| - π¬ Research on polymer degradation | |
| - β»οΈ Recycling feasibility assessment | |
| - π± Sustainability impact studies | |
| - π Quality control in manufacturing | |
| """) | |
| # Run the application | |
| main() | |