devjas1
(CLEAN): remove 'torch.tensor(logits)' misuse to fix softmax warning
22d9362
raw
history blame
33.6 kB
from models.resnet_cnn import ResNet1D
from models.figure2_cnn import Figure2CNN
import hashlib
import gc
import time
import io
from PIL import Image
import matplotlib.pyplot as plt
import matplotlib
import numpy as np
import torch
import torch.nn.functional as F
import streamlit as st
import os
import sys
from pathlib import Path
# Ensure 'utils' directory is in the Python path
utils_path = Path(__file__).resolve().parent / "utils"
if utils_path.is_dir() and str(utils_path) not in sys.path:
sys.path.append(str(utils_path))
matplotlib.use("Agg") # ensure headless rendering in Spaces
# Import local modules
from utils.preprocessing import resample_spectrum
KEEP_KEYS = {
# === global UI context we want to keep after "Reset" ===
"model_select", # sidebar model key
"input_mode", # radio for Upload|Sample
"uploader_version", # version counter for file uploader
"input_registry", # radio controlling Upload vs Sample
}
# Configuration
st.set_page_config(
page_title="ML Polymer Classification",
page_icon="πŸ”¬",
layout="wide",
initial_sidebar_state="expanded"
)
# Stabilize tab panel height on HF Spaces to prevent visible column jitter.
# This sets a minimum height for the content area under the tab headers.
st.markdown("""
<style>
/* Tabs content area: the sibling after the tablist */
div[data-testid="stTabs"] > div[role="tablist"] + div { min-height: 420px;}
</style>
""", unsafe_allow_html=True)
# Constants
TARGET_LEN = 500
SAMPLE_DATA_DIR = Path("sample_data")
# Prefer env var, else 'model_weights' if present; else canonical 'outputs'
MODEL_WEIGHTS_DIR = (
os.getenv("WEIGHTS_DIR")
or ("model_weights" if os.path.isdir("model_weights") else "outputs")
)
# Model configuration
MODEL_CONFIG = {
"Figure2CNN (Baseline)": {
"class": Figure2CNN,
"path": f"{MODEL_WEIGHTS_DIR}/figure2_model.pth",
"emoji": "πŸ”¬",
"description": "Baseline CNN with standard filters",
"accuracy": "94.80%",
"f1": "94.30%"
},
"ResNet1D (Advanced)": {
"class": ResNet1D,
"path": f"{MODEL_WEIGHTS_DIR}/resnet_model.pth",
"emoji": "🧠",
"description": "Residual CNN with deeper feature learning",
"accuracy": "96.20%",
"f1": "95.90%"
}
}
# Label mapping
LABEL_MAP = {0: "Stable (Unweathered)", 1: "Weathered (Degraded)"}
# === UTILITY FUNCTIONS ===
def init_session_state():
defaults = {
"status_message": "Ready to analyze polymer spectra πŸ”¬",
"status_type": "info",
"input_text": None,
"filename": None,
"input_source": None, # "upload" or "sample"
"sample_select": "-- Select Sample --",
"input_mode": "Upload File", # controls which pane is visible
"inference_run_once": False,
"x_raw": None, "y_raw": None, "y_resampled": None,
"log_messages": [],
"uploader_version": 0,
"current_upload_key": "upload_txt_0",
}
for k, v in defaults.items():
st.session_state.setdefault(k, v)
for key, default_value in defaults.items():
if key not in st.session_state:
st.session_state[key] = default_value
def label_file(filename: str) -> int:
"""Extract label from filename based on naming convention"""
name = Path(filename).name.lower()
if name.startswith("sta"):
return 0
elif name.startswith("wea"):
return 1
else:
# Return None for unknown patterns instead of raising error
return -1 # Default value for unknown patterns
@st.cache_data
def load_state_dict(_mtime, model_path):
"""Load state dict with mtime in cache key to detect file changes"""
try:
return torch.load(model_path, map_location="cpu", weights_only=True)
except (FileNotFoundError, RuntimeError) as e:
st.warning(f"Error loading state dict: {e}")
return None
@st.cache_resource
def load_model(model_name):
"""Load and cache the specified model with error handling"""
try:
config = MODEL_CONFIG[model_name]
model_class = config["class"]
model_path = config["path"]
# Initialize model
model = model_class(input_length=TARGET_LEN)
# Check if model file exists
if not os.path.exists(model_path):
st.warning(f"⚠️ Model weights not found: {model_path}")
st.info("Using randomly initialized model for demonstration purposes.")
return model, False
# Get mtime for cache invalidation
mtime = os.path.getmtime(model_path)
# Load weights
state_dict = load_state_dict(mtime, model_path)
if state_dict:
model.load_state_dict(state_dict, strict=True)
if model is None:
raise ValueError(
"Model is not loaded. Please check the model configuration or weights.")
model.eval()
return model, True
else:
return model, False
except (FileNotFoundError, KeyError) as e:
st.error(f"❌ Error loading model {model_name}: {str(e)}")
return None, False
def cleanup_memory():
"""Clean up memory after inference"""
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
@st.cache_data
def get_sample_files():
"""Get list of sample files if available"""
sample_dir = Path(SAMPLE_DATA_DIR)
if sample_dir.exists():
return sorted(list(sample_dir.glob("*.txt")))
return []
def parse_spectrum_data(raw_text):
"""Parse spectrum data from text with robust error handling and validation"""
x_vals, y_vals = [], []
for line in raw_text.splitlines():
line = line.strip()
if not line or line.startswith('#'): # Skip empty lines and comments
continue
try:
# Handle different separators
parts = line.replace(",", " ").split()
numbers = [p for p in parts if p.replace('.', '', 1).replace(
'-', '', 1).replace('+', '', 1).isdigit()]
if len(numbers) >= 2:
x, y = float(numbers[0]), float(numbers[1])
x_vals.append(x)
y_vals.append(y)
except ValueError:
# Skip problematic lines but don't fail completely
continue
if len(x_vals) < 10: # Minimum reasonable spectrum length
raise ValueError(
f"Insufficient data points: {len(x_vals)}. Need at least 10 points.")
x = np.array(x_vals)
y = np.array(y_vals)
# Check for NaNs
if np.any(np.isnan(x)) or np.any(np.isnan(y)):
raise ValueError("Input data contains NaN values")
# Check monotonic increasing x
if not np.all(np.diff(x) > 0):
raise ValueError("Wavenumbers must be strictly increasing")
# Check reasonable range for Raman spectroscopy
if min(x) < 0 or max(x) > 10000 or (max(x) - min(x)) < 100:
raise ValueError(
f"Invalid wavenumber range: {min(x)} - {max(x)}. Expected ~400-4000 cm⁻¹ with span >100")
return x, y
def create_spectrum_plot(x_raw, y_raw, x_resampled, y_resampled):
"""Create spectrum visualization plot"""
fig, ax = plt.subplots(1, 2, figsize=(13, 5), dpi=100)
# == Raw spectrum ==
ax[0].plot(x_raw, y_raw, label="Raw", color="dimgray", linewidth=1)
ax[0].set_title("Raw Input Spectrum")
ax[0].set_xlabel("Wavenumber (cm⁻¹)")
ax[0].set_ylabel("Intensity")
ax[0].grid(True, alpha=0.3)
ax[0].legend()
# == Resampled spectrum ==
ax[1].plot(x_resampled, y_resampled, label="Resampled", color="steelblue", linewidth=1)
ax[1].set_title(f"Resampled ({len(y_resampled)} points)")
ax[1].set_xlabel("Wavenumber (cm⁻¹)")
ax[1].set_ylabel("Intensity")
ax[1].grid(True, alpha=0.3)
ax[1].legend()
plt.tight_layout()
# == Convert to image ==
buf = io.BytesIO()
plt.savefig(buf, format='png', bbox_inches='tight', dpi=100)
buf.seek(0)
plt.close(fig) # Prevent memory leaks
return Image.open(buf)
def render_confidence_bar(probabilities, class_labels):
bar = lambda p: "β–ˆ" * int(p * 20)
for label, prob in zip(class_labels, probabilities):
st.write(f"**{label}**: {bar(prob)} {prob*100:.1f}%")
def get_confidence_description(logit_margin):
"""Get human-readable confidence description"""
if logit_margin > 1000:
return "VERY HIGH", "🟒"
elif logit_margin > 250:
return "HIGH", "🟑"
elif logit_margin > 100:
return "MODERATE", "🟠"
else:
return "LOW", "πŸ”΄"
def log_message(msg: str):
"""Append a timestamped line to the in-app log, creating the buffer if needed."""
if "log_messages" not in st.session_state or st.session_state["log_messages"] is None:
st.session_state["log_messages"] = []
st.session_state["log_messages"].append(
f"[{time.strftime('%Y-%m-%d %H:%M:%S')}] {msg}"
)
def trigger_run():
"""Set a flag so we can detect button press reliably across reruns"""
st.session_state['run_requested'] = True
def on_sample_change():
"""Read selected sample once and persist as text."""
sel = st.session_state.get("sample_select", "-- Select Sample --")
if sel == "-- Select Sample --":
return
try:
text = (Path(SAMPLE_DATA_DIR / sel).read_text(encoding="utf-8"))
st.session_state["input_text"] = text
st.session_state["filename"] = sel
st.session_state["input_source"] = "sample"
# πŸ”§ Clear previous results so right column resets immediately
reset_results("New sample selected")
st.session_state["status_message"] = f"πŸ“ Sample '{sel}' ready for analysis"
st.session_state["status_type"] = "success"
except (FileNotFoundError, IOError) as e:
st.session_state["status_message"] = f"❌ Error loading sample: {e}"
st.session_state["status_type"] = "error"
def on_input_mode_change():
"""Reset sample when switching to Upload"""
if st.session_state["input_mode"] == "Upload File":
st.session_state["sample_select"] = "-- Select Sample --"
# πŸ”§ Reset when switching modes to prevent stale right-column visuals
reset_results("Switched input mode")
def on_model_change():
"""Force the right column back to init state when the model changes"""
reset_results("Model changed")
def reset_results(reason: str = ""):
"""Clear previous inference artifacts so the right column returns to initial state."""
st.session_state["inference_run_once"] = False
st.session_state["x_raw"] = None
st.session_state["y_raw"] = None
st.session_state["y_resampled"] = None
# ||== Clear logs between runs ==||
st.session_state["log_messages"] = []
# ||== Always reset the status box ==||
st.session_state["status_message"] = (
f"ℹ️ {reason}"
if reason else "Ready to analyze polymer spectra πŸ”¬"
)
st.session_state["status_type"] = "info"
def reset_ephemeral_state():
# === remove everything except KEPT global UI context ===
for k in list(st.session_state.keys()):
if k not in KEEP_KEYS:
st.session_state.pop(k, None)
# == bump the uploader version β†’ new widget instance with empty value ==
st.session_state["uploader_version"] += 1
st.session_state["current_upload_key"] = f"upload_txt_{st.session_state['uploader_version']}"
# == reseed other emphemeral state ==
st.session_state["input_text"] = None
st.session_state["filename"] = None
st.session_state["input_source"] = None
st.session_state["sample_select"] = "-- Select Sample --"
# == return the UI to a clean state ==
st.session_state["inference_run_once"] = False
st.session_state["x_raw"] = None
st.session_state["y_raw"] = None
st.session_state["y_resampled"] = None
st.session_state["log_messages"] = []
st.session_state["status_message"] = "Ready to analyze polymer spectra πŸ”¬"
st.session_state["status_type"] = "info"
st.rerun()
def plot_confidence_bar(probabilities: list[float], class_labels: list[str]) -> None:
"""Renders a horizontal bar chart of prediction confidences per class."""
fig, ax = plt.subplots(figsize=(4, 1.5))
bars = ax.barh(class_labels, probabilities, color=[
"green" if i == np.argmax(probabilities) else "gray"
for i in range(len(probabilities))
])
ax.set_xlabel("Confidence")
ax.set_title("Prediction Confidence")
ax.xaxis.set_ticks([0, 0.5, 1.0])
ax.set_xlim(0, 1.0)
for i, (label, prob) in enumerate(zip(class_labels, probabilities)):
ax.text(prob + 0.01, i, f"{prob*100:.1f}%", va='center', fontsize=8)
st.pyplot(fig)
# Main app
def main():
init_session_state()
# Header
st.title("πŸ”¬ AI-Driven Polymer Classification")
st.markdown(
"**Predict polymer degradation states using Raman spectroscopy and deep learning**")
st.info(
"**Prototype Notice:** v0.1 Raman-only. "
"Multi-model CNN evaluation in progress. "
"FTIR support planned.",
icon="⚑"
)
# Sidebar
with st.sidebar:
st.header("ℹ️ About This App")
st.sidebar.markdown("""
AI-Driven Polymer Aging Prediction and Classification
🎯 **Purpose**: Classify polymer degradation using AI
πŸ“Š **Input**: Raman spectroscopy `.txt` files
🧠 **Models**: CNN architectures for binary classification
πŸ’Ύ **Current**: Figure2CNN (baseline)
πŸ“ˆ **Next**: More trained CNNs in evaluation pipeline
---
**Team**
Dr. Sanmukh Kuppannagari (Mentor)
Dr. Metin Karailyan (Mentor)
πŸ‘¨β€πŸ’» Jaser Hasan (Author)
---
**Links**
πŸ”— [Live HF Space](https://huggingface.co/spaces/dev-jas/polymer-aging-ml)
πŸ“‚ [GitHub Repository](https://github.com/KLab-AI3/ml-polymer-recycling)
---
**Model Credit**
Baseline model inspired by *Figure 2 CNN* from:
> Neo, E.R.K., Low, J.S.C., Goodship, V., Debattista, K. (2023).
> *Deep learning for chemometric analysis of plastic spectral data from infrared and Raman databases*.
> _Resources, Conservation & Recycling_, **188**, 106718.
[https://doi.org/10.1016/j.resconrec.2022.106718](https://doi.org/10.1016/j.resconrec.2022.106718)
""")
st.markdown("---")
# Model selection
st.subheader("🧠 Model Selection")
model_labels = [
f"{MODEL_CONFIG[name]['emoji']} {name}" for name in MODEL_CONFIG.keys()]
selected_label = st.selectbox("Choose AI model:", model_labels,
key="model_select", on_change=on_model_change)
model_choice = selected_label.split(" ", 1)[1]
# Model info
config = MODEL_CONFIG[model_choice]
st.markdown(f"""
**πŸ“ˆ {config['emoji']} Model Details**
*{config['description']}*
- **Accuracy**: `{config['accuracy']}`
- **F1 Score**: `{config['f1']}`
""")
# Main content area
col1, col2 = st.columns([1, 1.5], gap="large")
with col1:
st.subheader("πŸ“ Data Input")
mode = st.radio(
"Input mode",
["Upload File", "Sample Data"],
key="input_mode",
horizontal=True,
on_change=on_input_mode_change
)
# ---- Upload tab ----
if mode == "Upload File":
upload_key = st.session_state["current_upload_key"]
up = st.file_uploader(
"Upload Raman spectrum (.txt)",
type="txt",
help="Upload a text file with wavenumber and intensity columns",
key=upload_key, # ← versioned key
)
# == process change immediately (no on_change; simpler & reliable) ==
if up is not None:
raw = up.read()
text = raw.decode("utf-8") if isinstance(raw, bytes) else raw
# == only reparse if its a different file|source ==
if st.session_state.get("filename") != getattr(up, "name", None) or st.session_state.get("input_source") != "upload":
st.session_state["input_text"] = text
st.session_state["filename"] = getattr(up, "name", "uploaded.txt")
st.session_state["input_source"] = "upload"
# == clear right column immediately ==
reset_results("New file selected")
st.session_state["status_message"] = f"πŸ“ File '{st.session_state['filename']}' ready for analysis"
st.session_state["status_type"] = "success"
if up:
st.success(f"βœ… Loaded: {up.name}")
# ---- Sample tab ----
else:
sample_files = get_sample_files()
if sample_files:
options = ["-- Select Sample --"] + \
[p.name for p in sample_files]
sel = st.selectbox(
"Choose sample spectrum:",
options,
key="sample_select",
on_change=on_sample_change, # <-- critical
)
if sel != "-- Select Sample --":
st.success(f"βœ… Loaded sample: {sel}")
else:
st.info("No sample data available")
# ---- Status box ----
st.subheader("🚦 Status")
msg = st.session_state.get("status_message", "Ready")
typ = st.session_state.get("status_type", "info")
if typ == "success":
st.success(msg)
elif typ == "error":
st.error(msg)
else:
st.info(msg)
# ---- Model load ----
model, model_loaded = load_model(model_choice)
if not model_loaded:
st.warning("⚠️ Model weights not available - using demo mode")
# Ready to run if we have text and a model
inference_ready = bool(st.session_state.get(
"input_text")) and (model is not None)
# === Run Analysis (form submit batches state) ===
with st.form("analysis_form", clear_on_submit=False):
submitted = st.form_submit_button(
"▢️ Run Analysis",
type="primary",
disabled=not inference_ready,
)
if st.button("Reset", help="Clear current file(s), plots, and results"):
reset_ephemeral_state()
if submitted and inference_ready:
# parse β†’ preprocess β†’ predict β†’ render
# Handles the submission of the analysis form and performs spectrum data processing
try:
raw_text = st.session_state["input_text"]
filename = st.session_state.get("filename") or "unknown.txt"
# Parse
with st.spinner("Parsing spectrum data..."):
x_raw, y_raw = parse_spectrum_data(raw_text)
# Resample
with st.spinner("Resampling spectrum..."):
# ===Resample Unpack===
r1, r2 = resample_spectrum(x_raw, y_raw, TARGET_LEN)
def _is_strictly_increasing(a):
try:
a = np.asarray(a)
return a.ndim == 1 and a.size >= 2 and np.all(np.diff(a) > 0)
except Exception:
return False
if _is_strictly_increasing(r1) and not _is_strictly_increasing(r2):
x_resampled, y_resampled = np.asarray(r1), np.asarray(r2)
elif _is_strictly_increasing(r2) and not _is_strictly_increasing(r1):
x_resampled, y_resampled = np.asarray(r2), np.asarray(r1)
else:
# == Ambigous; assume (x, y) and log
x_resampled, y_resampled = np.asarray(r1), np.asarray(r2)
log_message("Resample outputs ambigous; assumed (x, y).")
# ===Persists for plotting + inference===
st.session_state["x_raw"] = x_raw
st.session_state["y_raw"] = y_raw
st.session_state["x_resampled"] = x_resampled # ←-- NEW
st.session_state["y_resampled"] = y_resampled
# Persist results (drives right column)
st.session_state["x_raw"] = x_raw
st.session_state["y_raw"] = y_raw
st.session_state["y_resampled"] = y_resampled
st.session_state["inference_run_once"] = True
st.session_state["status_message"] = f"πŸ” Analysis completed for: {filename}"
st.session_state["status_type"] = "success"
st.rerun()
except (ValueError, TypeError) as e:
st.error(f"❌ Analysis failed: {e}")
st.session_state["status_message"] = f"❌ Error: {e}"
st.session_state["status_type"] = "error"
# Results column
with col2:
if st.session_state.get("inference_run_once", False):
st.subheader("πŸ“Š Analysis Results")
# Get data from session state
x_raw = st.session_state.get('x_raw')
y_raw = st.session_state.get('y_raw')
x_resampled = st.session_state.get('x_resampled') # ← NEW
y_resampled = st.session_state.get('y_resampled')
filename = st.session_state.get('filename', 'Unknown')
if all(v is not None for v in [x_raw, y_raw, y_resampled]):
# Create and display plot
try:
spectrum_plot = create_spectrum_plot(x_raw, y_raw, x_resampled, y_resampled)
st.image(
spectrum_plot, caption="Spectrum Preprocessing Results", use_container_width=True)
except (ValueError, RuntimeError, TypeError) as e:
st.warning(f"Could not generate plot: {e}")
log_message(f"Plot generation error: {e}")
# Run inference
try:
with st.spinner("Running AI inference..."):
start_time = time.time()
# Prepare input tensor
input_tensor = torch.tensor(
y_resampled, dtype=torch.float32).unsqueeze(0).unsqueeze(0)
# Run inference
model.eval()
with torch.no_grad():
if model is None:
raise ValueError(
"Model is not loaded. Please check the model configuration or weights.")
logits = model(input_tensor)
prediction = torch.argmax(logits, dim=1).item()
logits_list = logits.detach().numpy().tolist()[0]
probs = F.softmax(logits.detach(), dim=1).cpu().numpy().flatten()
inference_time = time.time() - start_time
log_message(
f"Inference completed in {inference_time:.2f}s, prediction: {prediction}")
# Clean up memory
cleanup_memory()
# Get ground truth if available
true_label_idx = label_file(filename)
true_label_str = LABEL_MAP.get(
true_label_idx, "Unknown") if true_label_idx is not None else "Unknown"
# Get prediction
predicted_class = LABEL_MAP.get(
int(prediction), f"Class {int(prediction)}")
# Calculate confidence metrics
logit_margin = abs(
logits_list[0] - logits_list[1]) if len(logits_list) >= 2 else 0
confidence_desc, confidence_emoji = get_confidence_description(
logit_margin)
# Display results
st.markdown("### 🎯 Prediction Results")
# Main prediction
st.markdown(f"""
**πŸ”¬ Sample**: `{filename}`
**🧠 Model**: `{model_choice}`
**⏱️ Processing Time**: `{inference_time:.2f}s`
""")
# Prediction box
if predicted_class == "Stable (Unweathered)":
st.success(f"🟒 **Prediction**: {predicted_class}")
else:
st.warning(f"🟑 **Prediction**: {predicted_class}")
# Confidence
st.markdown(
f"**{confidence_emoji} Confidence**: {confidence_desc} (margin: {logit_margin:.1f})")
# Ground truth comparison
if true_label_idx is not None:
if predicted_class == true_label_str:
st.success(
f"βœ… **Ground Truth**: {true_label_str} - **Correct!**")
else:
st.error(
f"❌ **Ground Truth**: {true_label_str} - **Incorrect**")
else:
st.info(
"ℹ️ **Ground Truth**: Unknown (filename doesn't follow naming convention)")
# ===display confidence results===
class_labels = ["Stable", "Weathered"]
plot_confidence_bar(probabilities=probs.tolist(), class_labels=class_labels)
# ===Detailed results tabs===
tab1, tab2, tab3 = st.tabs(
["πŸ“Š Details", "πŸ”¬ Technical", "πŸ“˜ Explanation"])
with tab1:
st.markdown("**Model Output (Logits)**")
for i, score in enumerate(logits_list):
label = LABEL_MAP.get(i, f"Class {i}")
st.metric(label, f"{score:.2f}")
st.markdown("**Spectrum Statistics**")
st.json({
"Original Length": len(x_raw) if x_raw is not None else 0,
"Resampled Length": TARGET_LEN,
"Wavenumber Range": f"{min(x_raw):.1f} - {max(x_raw):.1f} cm⁻¹" if x_raw is not None else "N/A",
"Intensity Range": f"{min(y_raw):.1f} - {max(y_raw):.1f}" if y_raw is not None else "N/A",
"Model Confidence": confidence_desc
})
with tab2:
st.markdown("**Technical Information**")
model_path = MODEL_CONFIG[model_choice]["path"]
mtime = os.path.getmtime(model_path) if os.path.exists(
model_path) else "N/A"
file_hash = hashlib.md5(open(model_path, 'rb').read(
)).hexdigest() if os.path.exists(model_path) else "N/A"
st.json({
"Model Architecture": model_choice,
"Model Path": model_path,
"Weights Last Modified": time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(mtime)) if mtime != "N/A" else "N/A",
"Weights Hash": file_hash,
"Input Shape": list(input_tensor.shape),
"Output Shape": list(logits.shape),
"Inference Time": f"{inference_time:.3f}s",
"Device": "CPU",
"Model Loaded": model_loaded
})
if not model_loaded:
st.warning(
"⚠️ Demo mode: Using randomly initialized weights")
# Debug log
st.markdown("**Debug Log**")
st.text_area("Logs", "\n".join(
st.session_state.get("log_messages", [])), height=200)
try:
resampler_mod = getattr(resample_spectrum, "__module__", "unknown")
resampler_doc = getattr(resample_spectrum, "__doc__", None)
resampler_doc = resampler_doc.splitlines()[0] if isinstance(resampler_doc, str) and resampler_doc else "no doc"
y_rs = st.session_state.get("y_resampled", None)
diag = {}
if y_rs is not None:
arr = np.asarray(y_rs)
diag = {
"y_resampled_len": int(arr.size),
"y_resampled_min": float(np.min(arr)) if arr.size else None,
"y_resampled_max": float(np.max(arr)) if arr.size else None,
"y_resampled_ptp": float(np.ptp(arr)) if arr.size else None,
"y_resampled_unique": int(np.unique(arr).size) if arr.size else None,
"y_resampled_all_equal": bool(np.ptp(arr) == 0.0) if arr.size else None,
}
st.markdown("**Resampler Info")
st.json({
"module": resampler_mod,
"doc": resampler_doc,
**({"y_resampled_stats": diag} if diag else {})
})
except Exception as _e:
st.warning(f"Diagnostics skipped: {_e}")
with tab3:
st.markdown("""
**πŸ” Analysis Process**
1. **Data Upload**: Raman spectrum file loaded
2. **Preprocessing**: Data parsed and resampled to 500 points
3. **AI Inference**: CNN model analyzes spectral patterns
4. **Classification**: Binary prediction with confidence scores
**🧠 Model Interpretation**
The AI model identifies spectral features indicative of:
- **Stable polymers**: Well-preserved molecular structure
- **Weathered polymers**: Degraded/oxidized molecular bonds
**🎯 Applications**
- Material longevity assessment
- Recycling viability evaluation
- Quality control in manufacturing
- Environmental impact studies
""")
except (ValueError, RuntimeError) as e:
st.error(f"❌ Inference failed: {str(e)}")
log_message(f"Inference error: {str(e)}")
else:
st.error(
"❌ Missing spectrum data. Please upload a file and run analysis.")
else:
# Welcome message
st.markdown("""
### πŸ‘‹ Welcome to AI Polymer Classification
**Get started by:**
1. 🧠 Select an AI model in the sidebar
2. πŸ“ Upload a Raman spectrum file or choose a sample
3. ▢️ Click "Run Analysis" to get predictions
**Supported formats:**
- Text files (.txt) with wavenumber and intensity columns
- Space or comma-separated values
- Any length (automatically resampled to 500 points)
**Example applications:**
- πŸ”¬ Research on polymer degradation
- ♻️ Recycling feasibility assessment
- 🌱 Sustainability impact studies
- 🏭 Quality control in manufacturing
""")
# Run the application
main()