File size: 5,675 Bytes
dd49e6b
 
 
e469fd8
dd49e6b
 
 
 
 
 
 
 
e469fd8
dd49e6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe030dd
dd49e6b
 
 
 
 
 
 
 
 
 
e469fd8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe030dd
e469fd8
5054409
e469fd8
 
 
 
 
 
 
 
 
dd49e6b
e469fd8
 
5054409
 
 
dd49e6b
 
 
 
 
 
 
 
 
 
fe030dd
078ed21
 
 
 
dd49e6b
 
 
 
078ed21
 
 
dd49e6b
 
 
078ed21
 
dd49e6b
078ed21
 
edc1cf7
dd49e6b
 
 
 
 
 
 
 
 
078ed21
dd49e6b
078ed21
 
 
 
 
 
 
 
 
 
edc1cf7
078ed21
 
 
 
edc1cf7
 
 
 
078ed21
 
edc1cf7
 
 
 
078ed21
 
dd49e6b
 
 
edc1cf7
078ed21
 
 
 
edc1cf7
078ed21
edc1cf7
078ed21
 
 
dd49e6b
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import os

# --- New Imports ---
from config import TARGET_LEN
import time
import gc
import torch
import torch.nn.functional as F
import numpy as np
import streamlit as st
from pathlib import Path
from config import SAMPLE_DATA_DIR
from models.registry import build, choices


def label_file(filename: str) -> int:
    """Extract label from filename based on naming convention"""
    name = Path(filename).name.lower()
    if name.startswith("sta"):
        return 0
    elif name.startswith("wea"):
        return 1
    else:
        # Return None for unknown patterns instead of raising error
        return -1  # Default value for unknown patterns


@st.cache_data
def load_state_dict(mtime, model_path):
    """Load state dict with mtime in cache key to detect file changes"""
    try:
        return torch.load(model_path, map_location="cpu")
    except (FileNotFoundError, RuntimeError) as e:
        st.warning(f"Error loading state dict: {e}")
        return None


@st.cache_resource
def load_model(model_name):
    # First try registry system (new approach)
    if model_name in choices():
        # Use registry system
        model = build(model_name, TARGET_LEN)

        # Try to load weights from standard locations
        weight_paths = [
            f"model_weights/{model_name}_model.pth",
            f"outputs/{model_name}_model.pth",
            f"model_weights/{model_name}.pth",
            f"outputs/{model_name}.pth",
        ]

        weights_loaded = False
        for weight_path in weight_paths:
            if os.path.exists(weight_path):
                try:
                    mtime = os.path.getmtime(weight_path)
                    state_dict = load_state_dict(mtime, weight_path)
                    if state_dict:
                        model.load_state_dict(state_dict, strict=True)
                        model.eval()
                        weights_loaded = True
                        break  # Exit loop after successful load

                except (OSError, RuntimeError):
                    continue

        if not weights_loaded:
            st.warning(
                f"⚠️ Model weights not found for '{model_name}'. Using randomly initialized model."
            )
            st.info(
                "This model will provide random predictions for demonstration purposes."
            )

        return model, weights_loaded

    # If model not in registry, raise error
    st.error(f"Unknown model '{model_name}'. Available models: {choices()}")
    return None, False


def cleanup_memory():
    """Clean up memory after inference"""
    gc.collect()
    if torch.cuda.is_available():
        torch.cuda.empty_cache()


@st.cache_data
def run_inference(y_resampled, model_choice, modality: str, cache_key=None):
    """Run model inference and cache results with performance tracking"""
    from utils.performance_tracker import get_performance_tracker, PerformanceMetrics
    from datetime import datetime

    model, model_loaded = load_model(model_choice)
    if not model_loaded:
        return None, None, None, None, None

    # Performance tracking setup
    tracker = get_performance_tracker()

    input_tensor = (
        torch.tensor(y_resampled, dtype=torch.float32).unsqueeze(0).unsqueeze(0)
    )

    # Track inference performance
    start_time = time.time()
    start_memory = _get_memory_usage()

    model.eval()  # type: ignore
    with torch.no_grad():
        if model is None:
            raise ValueError(
                "Model is not loaded. Please check the model configuration or weights."
            )
        logits = model(input_tensor)
        prediction = torch.argmax(logits, dim=1).item()
        logits_list = logits.detach().numpy().tolist()[0]
        probs = F.softmax(logits.detach(), dim=1).cpu().numpy().flatten()

    inference_time = time.time() - start_time
    end_memory = _get_memory_usage()
    memory_usage = max(end_memory - start_memory, 0)

    # Log performance metrics
    try:
        confidence = float(max(probs)) if probs is not None and len(probs) > 0 else 0.0

        metrics = PerformanceMetrics(
            model_name=model_choice,
            prediction_time=inference_time,
            preprocessing_time=0.0,  # Will be updated by calling function if available
            total_time=inference_time,
            memory_usage_mb=memory_usage,
            accuracy=None,  # Will be updated if ground truth is available
            confidence=confidence,
            timestamp=datetime.now().isoformat(),
            input_size=(
                len(y_resampled) if hasattr(y_resampled, "__len__") else TARGET_LEN
            ),
            modality=modality,
        )

        tracker.log_performance(metrics)
    except (AttributeError, ValueError, KeyError) as e:
        # Don't fail inference if performance tracking fails
        print(f"Performance tracking failed: {e}")

    cleanup_memory()
    return prediction, logits_list, probs, inference_time, logits


def _get_memory_usage() -> float:
    """Get current memory usage in MB"""
    try:
        import psutil

        process = psutil.Process()
        return process.memory_info().rss / 1024 / 1024  # Convert to MB
    except ImportError:
        return 0.0  # psutil not available


@st.cache_data
def get_sample_files():
    """Get list of sample files if available"""
    sample_dir = Path(SAMPLE_DATA_DIR)
    if sample_dir.exists():
        return sorted(list(sample_dir.glob("*.txt")))
    return []