Spaces:
Running
Running
File size: 5,160 Bytes
d255a0f 232a935 d255a0f ba53531 7651b30 40e08df 0218933 d255a0f e484a46 2ee7ad2 e484a46 232a935 e484a46 529bbd6 e484a46 232a935 2ee7ad2 529bbd6 2ee7ad2 529bbd6 e484a46 529bbd6 e484a46 529bbd6 232a935 2ee7ad2 232a935 cbc0b57 e484a46 529bbd6 e484a46 232a935 e484a46 2ee7ad2 e484a46 2ee7ad2 e484a46 2ee7ad2 e484a46 2ee7ad2 e484a46 2ee7ad2 e484a46 232a935 e484a46 232a935 e484a46 232a935 8a41ab5 2ee7ad2 8a41ab5 232a935 8a41ab5 232a935 8a41ab5 232a935 8a41ab5 232a935 8a41ab5 232a935 8a41ab5 232a935 8a41ab5 2ee7ad2 232a935 8a41ab5 232a935 8a41ab5 0218933 2ee7ad2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 |
---
title: AI Polymer Classification (Raman & FTIR)
emoji: π¬
colorFrom: indigo
colorTo: yellow
sdk: streamlit
app_file: Upload_and_Run.py
pinned: false
license: apache-2.0
---
# AI-Driven Polymer Aging Prediction and Classification (v0.1)
[](https://opensource.org/licenses/Apache-2.0)



This web application classifies the degradation state of polymers using **Raman and FTIR spectroscopy** and deep learning.
It is a prototype pipeline for evaluating multiple convolutional neural networks (CNNs) on spectral data.
---
## π§ͺ Current Scope
- π¬ **Modalities**: Raman & FTIR spectroscopy
- πΎ **Input Formats**: `.txt`, `.csv`, `.json` (with auto-detection)
- π§ **Models**: Figure2CNN (baseline), ResNet1D, ResNet18Vision, Custom CNNs (Enhanced, Efficient, Hybrid)
- π **Task**: Binary classification β Stable vs Weathered polymers
- π **Features**:
- Single-spectrum + Batch Spectrum Analysis
- Multi-model comparison
- Performance tracking dashboard
- π οΈ **Architecture**: PyTorch + Streamlit
---
## π§ Roadmap
- [x] Inference from Raman `.txt` files
- [x] Model selection (Figure2CNN, ResNet1D)
- [x] **FTIR support** (modular integration complete)
- [x] **Multi-model comparison dashboard**
- [x] **Performance tracking dashboard**
- [x] Add more trained CNNs for comparison
- [x] Image-based inference (future modality)
- [ ] RESTful API for programmatic access
---
## π§ How to Use
The application provides three main analysis modes in a tabbed interface:
1. **Standard Analysis**:
- Upload a single spectrum file (`.txt`, `.csv`, `.json`) or a batch of files.
- Choose a model from the sidebar.
- Run analysis and view the prediction, confidence, and technical details.
2. **Model Comparison**:
- Upload a single spectrum file.
- The app runs inference with all available models.
- View a side-by-side comparison of the models' predictions and performance.
3. **Performance Tracking**:
- Explore a dashboard with visualizations of historical performance data.
- Compare model performance across different metrics.
- Export performance data in CSV or JSON format.
### Supported Input
- Plaintext `.txt`, `.csv`, or `.json` files.
- Data can be space-, comma-, or tab-separated.
- Comment lines (`#`, `%`) are ignored.
- The app automatically detects the file format and resamples the data to a standard length.
---
## Contributors
- Dr. Sanmukh Kuppannagari (Mentor)
- Dr. Metin Karailyan (Mentor)
- Jaser Hasan (Author/Developer)
## Model Credit
Baseline model inspired by:
Neo, E.R.K., Low, J.S.C., Goodship, V., Debattista, K. (2023).
_Deep learning for chemometric analysis of plastic spectral data from infrared and Raman databases._
_Resources, Conservation & Recycling_, **188**, 106718.
[https://doi.org/10.1016/j.resconrec.2022.106718](https://doi.org/10.1016/j.resconrec.2022.106718)
---
## π Links
- **Live App**: [Hugging Face Space](https://huggingface.co/spaces/dev-jas/polymer-aging-ml)
- **GitHub Repo**: [ml-polymer-recycling](https://github.com/KLab-AI3/ml-polymer-recycling)
---
## π Technical Architecture
**The system is built on a modular, production-ready architecture designed for scalability and maintainability.**
- **Frontend**: Streamlit-based web application (`Upload_and_Run.py`) with interactive, multi-tab UI.
- **Backend**: PyTorch for deep learning operations including model loading and inference.
- **Model Management**: Registry pattern (`models/registry.py`) for dynamic model loading and easy integration of new architectures.
- **Data Processing**: Modality-aware preprocessing pipeline (`utils/preprocessing.py`) for data integrity and standardization (Raman & FTIR).
- **Multi-Format Parsing**: `utils/multifile.py` for parsing `.txt`, `.csv`, and `.json` files.
- **Results Management**: `utils/results_manager.py` for managing session and persistent results, multi-model comparison, and data export.
- **Performance Tracking**: `utils/performance_tracker.py` logs metrics to SQLite and powers the dashboard.
- **Deployment**: Containerized via Docker (`Dockerfile`) for reproducible, cross-platform execution.
---
## Notable Additions in `space-deploy` Branch
- Enhanced FTIR support, with modular integration for spectral data.
- Multi-model comparison dashboard for evaluating multiple CNNs in parallel.
- Performance tracking dashboard with export options (CSV, JSON).
- Batch spectrum analysis for high-throughput evaluation.
- Updated color scheme (teal β yellow) for improved UI clarity.
- Improved README with Hugging Face Space config and clearer usage instructions.
- Bug fixes for filename casing and SDK deployment settings.
- Forward-looking plans for RESTful API and image-based inference.
---
|