File size: 25,780 Bytes
6b58aaa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
"""

Collaborative Research Interface for POLYMEROS

Community-driven research and validation tools

"""

import streamlit as st
import json
import numpy as np
import matplotlib.pyplot as plt
from datetime import datetime, timedelta
from typing import Dict, List, Any
import uuid

# Import POLYMEROS components
import sys
import os

sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))

from modules.enhanced_data import KnowledgeGraph, ContextualSpectrum


def init_collaborative_session():
    """Initialize collaborative research session"""
    if "research_projects" not in st.session_state:
        st.session_state.research_projects = load_demo_projects()

    if "community_hypotheses" not in st.session_state:
        st.session_state.community_hypotheses = load_demo_hypotheses()

    if "user_profile" not in st.session_state:
        st.session_state.user_profile = {
            "user_id": "demo_researcher",
            "name": "Demo Researcher",
            "expertise_areas": ["polymer_chemistry", "spectroscopy"],
            "reputation_score": 85,
            "contributions": 12,
        }


def load_demo_projects():
    """Load demonstration research projects"""
    return [
        {
            "id": "proj_001",
            "title": "Microplastic Degradation Pathways",
            "description": "Investigating spectroscopic signatures of microplastic degradation in marine environments",
            "lead_researcher": "Dr. Sarah Chen",
            "institution": "Ocean Research Institute",
            "collaborators": ["University of Tokyo", "MIT Marine Lab"],
            "status": "active",
            "created_date": "2024-01-15",
            "datasets": 3,
            "participants": 8,
            "recent_activity": "New FTIR dataset uploaded",
            "tags": ["microplastics", "marine_degradation", "FTIR"],
        },
        {
            "id": "proj_002",
            "title": "Biodegradable Polymer Performance",
            "description": "Comparative study of biodegradable polymer aging under different environmental conditions",
            "lead_researcher": "Prof. Michael Rodriguez",
            "institution": "Sustainable Materials Lab",
            "collaborators": ["Stanford University", "Green Chemistry Institute"],
            "status": "recruiting",
            "created_date": "2024-02-20",
            "datasets": 1,
            "participants": 3,
            "recent_activity": "Seeking Raman spectroscopy expertise",
            "tags": ["biodegradable", "sustainability", "aging"],
        },
        {
            "id": "proj_003",
            "title": "AI-Assisted Polymer Discovery",
            "description": "Developing machine learning models for predicting polymer properties from spectroscopic data",
            "lead_researcher": "Dr. Aisha Patel",
            "institution": "AI Materials Research Center",
            "collaborators": ["DeepMind", "Google Research"],
            "status": "published",
            "created_date": "2023-11-10",
            "datasets": 15,
            "participants": 25,
            "recent_activity": "Results published in Nature Materials",
            "tags": ["machine_learning", "property_prediction", "discovery"],
        },
    ]


def load_demo_hypotheses():
    """Load demonstration community hypotheses"""
    return [
        {
            "id": "hyp_001",
            "statement": "Carbonyl peak intensity at 1715 cm⁻¹ correlates linearly with UV exposure time in PE samples",
            "proposer": "Dr. Sarah Chen",
            "institution": "Ocean Research Institute",
            "created_date": "2024-03-01",
            "supporting_evidence": [
                "Time-series FTIR data from 50 PE samples",
                "Controlled UV chamber experiments",
                "Statistical correlation analysis (RΒ² = 0.89)",
            ],
            "validation_status": "under_review",
            "peer_scores": [4.2, 3.8, 4.5, 4.0],
            "experimental_confirmations": 2,
            "tags": ["PE", "UV_degradation", "carbonyl"],
            "discussion_points": 8,
        },
        {
            "id": "hyp_002",
            "statement": "Machine learning models show systematic bias against weathered polymers with low crystallinity",
            "proposer": "Prof. Michael Rodriguez",
            "institution": "Sustainable Materials Lab",
            "created_date": "2024-02-15",
            "supporting_evidence": [
                "Model performance analysis across 1000+ samples",
                "Crystallinity correlation studies",
                "Bias detection algorithm results",
            ],
            "validation_status": "confirmed",
            "peer_scores": [4.8, 4.5, 4.7, 4.9],
            "experimental_confirmations": 5,
            "tags": ["machine_learning", "bias", "crystallinity"],
            "discussion_points": 15,
        },
    ]


def render_research_projects():
    """Render collaborative research projects interface"""
    st.header("πŸ”¬ Collaborative Research Projects")

    # Project filters
    col1, col2, col3 = st.columns(3)
    with col1:
        status_filter = st.selectbox(
            "Status:", ["all", "active", "recruiting", "published"]
        )
    with col2:
        tag_filter = st.selectbox(
            "Domain:", ["all", "microplastics", "biodegradable", "machine_learning"]
        )
    with col3:
        sort_by = st.selectbox("Sort by:", ["recent", "participants", "datasets"])

    # Filter and sort projects
    projects = st.session_state.research_projects

    if status_filter != "all":
        projects = [p for p in projects if p["status"] == status_filter]

    if tag_filter != "all":
        projects = [p for p in projects if tag_filter in p["tags"]]

    # Display projects
    for project in projects:
        with st.expander(f"πŸ“‹ {project['title']} ({project['status'].title()})"):
            col1, col2 = st.columns([2, 1])

            with col1:
                st.write(f"**Description:** {project['description']}")
                st.write(
                    f"**Lead Researcher:** {project['lead_researcher']} ({project['institution']})"
                )
                st.write(f"**Collaborators:** {', '.join(project['collaborators'])}")
                st.write(f"**Tags:** {', '.join(project['tags'])}")

            with col2:
                st.metric("Participants", project["participants"])
                st.metric("Datasets", project["datasets"])
                st.write(f"**Created:** {project['created_date']}")
                st.write(f"**Recent:** {project['recent_activity']}")

            # Action buttons
            button_col1, button_col2, button_col3 = st.columns(3)
            with button_col1:
                if st.button(f"Join Project", key=f"join_{project['id']}"):
                    st.success("Interest registered! Project lead will be notified.")

            with button_col2:
                if st.button(f"View Details", key=f"view_{project['id']}"):
                    render_project_details(project)

            with button_col3:
                if st.button(f"Contact Lead", key=f"contact_{project['id']}"):
                    st.info("Contact request sent to project lead.")

    # Create new project
    st.subheader("βž• Start New Project")
    with st.expander("Create Research Project"):
        project_title = st.text_input("Project Title:")
        project_description = st.text_area("Project Description:")
        research_areas = st.multiselect(
            "Research Areas:",
            [
                "polymer_chemistry",
                "spectroscopy",
                "machine_learning",
                "sustainability",
                "degradation",
            ],
        )

        if st.button("Create Project"):
            if project_title and project_description:
                new_project = {
                    "id": f"proj_{len(st.session_state.research_projects) + 1:03d}",
                    "title": project_title,
                    "description": project_description,
                    "lead_researcher": st.session_state.user_profile["name"],
                    "institution": "User Institution",
                    "collaborators": [],
                    "status": "recruiting",
                    "created_date": datetime.now().strftime("%Y-%m-%d"),
                    "datasets": 0,
                    "participants": 1,
                    "recent_activity": "Project created",
                    "tags": research_areas,
                }
                st.session_state.research_projects.append(new_project)
                st.success("Project created successfully!")
            else:
                st.error("Please fill in required fields.")


def render_project_details(project):
    """Render detailed project view"""
    st.subheader(f"Project Details: {project['title']}")

    # Project overview
    col1, col2 = st.columns(2)
    with col1:
        st.write(f"**Status:** {project['status'].title()}")
        st.write(f"**Lead:** {project['lead_researcher']}")
        st.write(f"**Institution:** {project['institution']}")

    with col2:
        st.write(f"**Created:** {project['created_date']}")
        st.write(f"**Participants:** {project['participants']}")
        st.write(f"**Datasets:** {project['datasets']}")

    # Tabs for different project aspects
    tab1, tab2, tab3, tab4 = st.tabs(
        ["Overview", "Datasets", "Collaborators", "Timeline"]
    )

    with tab1:
        st.write(project["description"])
        st.write(f"**Research Areas:** {', '.join(project['tags'])}")

    with tab2:
        st.write("**Available Datasets:**")
        # Mock dataset information
        datasets = [
            {
                "name": "PE_UV_exposure_series",
                "type": "FTIR",
                "samples": 150,
                "uploaded": "2024-03-01",
            },
            {
                "name": "Weathered_samples_marine",
                "type": "Raman",
                "samples": 75,
                "uploaded": "2024-02-15",
            },
            {
                "name": "Control_samples_lab",
                "type": "FTIR",
                "samples": 50,
                "uploaded": "2024-01-20",
            },
        ]

        for dataset in datasets:
            with st.expander(f"πŸ“Š {dataset['name']}"):
                st.write(f"**Type:** {dataset['type']}")
                st.write(f"**Samples:** {dataset['samples']}")
                st.write(f"**Uploaded:** {dataset['uploaded']}")
                if st.button(f"Access Dataset", key=f"access_{dataset['name']}"):
                    st.info("Dataset access request submitted.")

    with tab3:
        st.write("**Project Collaborators:**")
        for collab in project["collaborators"]:
            st.write(f"β€’ {collab}")

        st.write("**Recent Contributors:**")
        contributors = [
            {
                "name": "Dr. Sarah Chen",
                "contribution": "FTIR dataset",
                "date": "2024-03-01",
            },
            {
                "name": "Alex Johnson",
                "contribution": "Data analysis scripts",
                "date": "2024-02-28",
            },
            {
                "name": "Prof. Lisa Wang",
                "contribution": "Methodology review",
                "date": "2024-02-25",
            },
        ]

        for contrib in contributors:
            st.write(
                f"β€’ **{contrib['name']}:** {contrib['contribution']} ({contrib['date']})"
            )

    with tab4:
        st.write("**Project Timeline:**")
        timeline_events = [
            {
                "date": "2024-03-01",
                "event": "New FTIR dataset uploaded",
                "type": "data",
            },
            {
                "date": "2024-02-25",
                "event": "Methodology peer review completed",
                "type": "review",
            },
            {
                "date": "2024-02-15",
                "event": "Two new collaborators joined",
                "type": "team",
            },
            {
                "date": "2024-01-20",
                "event": "Initial dataset published",
                "type": "data",
            },
            {"date": "2024-01-15", "event": "Project initiated", "type": "milestone"},
        ]

        for event in timeline_events:
            event_icon = {"data": "πŸ“Š", "review": "πŸ”", "team": "πŸ‘₯", "milestone": "🎯"}
            st.write(
                f"{event_icon.get(event['type'], 'πŸ“…')} **{event['date']}:** {event['event']}"
            )


def render_community_hypotheses():
    """Render community hypothesis validation interface"""
    st.header("πŸ§ͺ Community Hypotheses")

    # Hypothesis filters
    col1, col2 = st.columns(2)
    with col1:
        status_filter = st.selectbox(
            "Validation Status:", ["all", "under_review", "confirmed", "rejected"]
        )
    with col2:
        st.selectbox(
            "Research Domain:",
            ["all", "degradation", "machine_learning", "characterization"],
        )

    # Display hypotheses
    hypotheses = st.session_state.community_hypotheses

    for hypothesis in hypotheses:
        # Calculate average peer score
        avg_score = np.mean(hypothesis["peer_scores"])

        with st.expander(
            f"🧬 {hypothesis['statement'][:80]}... (Score: {avg_score:.1f}/5)"
        ):
            col1, col2 = st.columns([2, 1])

            with col1:
                st.write(f"**Full Statement:** {hypothesis['statement']}")
                st.write(
                    f"**Proposer:** {hypothesis['proposer']} ({hypothesis['institution']})"
                )
                st.write(f"**Status:** {hypothesis['validation_status'].title()}")

                st.write("**Supporting Evidence:**")
                for evidence in hypothesis["supporting_evidence"]:
                    st.write(f"β€’ {evidence}")

            with col2:
                st.metric("Peer Score", f"{avg_score:.1f}/5")
                st.metric("Confirmations", hypothesis["experimental_confirmations"])
                st.metric("Discussions", hypothesis["discussion_points"])
                st.write(f"**Proposed:** {hypothesis['created_date']}")

            # Peer review section
            st.subheader("Peer Review")

            review_col1, review_col2 = st.columns(2)
            with review_col1:
                user_score = st.slider(
                    "Your Score:", 1, 5, 3, key=f"score_{hypothesis['id']}"
                )

            with review_col2:
                if st.button("Submit Review", key=f"review_{hypothesis['id']}"):
                    hypothesis["peer_scores"].append(user_score)
                    st.success("Review submitted!")

            # Comments and discussion
            st.subheader("Community Discussion")

            # Mock discussion
            discussions = [
                {
                    "author": "Dr. Sarah Chen",
                    "comment": "Interesting correlation! Would like to see this tested with PP samples.",
                    "date": "2024-03-02",
                },
                {
                    "author": "Prof. Wang",
                    "comment": "The RΒ² value is impressive. Have you controlled for temperature effects?",
                    "date": "2024-03-01",
                },
                {
                    "author": "Alex Johnson",
                    "comment": "We're seeing similar patterns in our lab. Happy to collaborate on validation.",
                    "date": "2024-02-28",
                },
            ]

            for discussion in discussions:
                st.write(
                    f"**{discussion['author']}** ({discussion['date']}): {discussion['comment']}"
                )

            # Add comment
            new_comment = st.text_area(
                "Add your comment:", key=f"comment_{hypothesis['id']}"
            )
            if st.button("Post Comment", key=f"post_{hypothesis['id']}"):
                if new_comment:
                    st.success("Comment posted!")
                else:
                    st.error("Please enter a comment.")

    # Submit new hypothesis
    st.subheader("βž• Propose New Hypothesis")
    with st.expander("Submit Hypothesis"):
        hyp_statement = st.text_area("Hypothesis Statement:")
        hyp_evidence = st.text_area("Supporting Evidence (one per line):")
        hyp_tags = st.multiselect(
            "Research Tags:",
            [
                "degradation",
                "machine_learning",
                "spectroscopy",
                "characterization",
                "prediction",
            ],
        )

        if st.button("Submit Hypothesis"):
            if hyp_statement and hyp_evidence:
                evidence_list = [
                    e.strip() for e in hyp_evidence.split("\n") if e.strip()
                ]
                new_hypothesis = {
                    "id": f"hyp_{len(st.session_state.community_hypotheses) + 1:03d}",
                    "statement": hyp_statement,
                    "proposer": st.session_state.user_profile["name"],
                    "institution": "User Institution",
                    "created_date": datetime.now().strftime("%Y-%m-%d"),
                    "supporting_evidence": evidence_list,
                    "validation_status": "under_review",
                    "peer_scores": [],
                    "experimental_confirmations": 0,
                    "tags": hyp_tags,
                    "discussion_points": 0,
                }
                st.session_state.community_hypotheses.append(new_hypothesis)
                st.success("Hypothesis submitted for peer review!")
            else:
                st.error("Please provide hypothesis statement and evidence.")


def render_peer_review_system():
    """Render peer review and reputation system"""
    st.header("πŸ‘₯ Peer Review System")

    user_profile = st.session_state.user_profile

    # User reputation dashboard
    st.subheader("Your Research Profile")

    col1, col2, col3, col4 = st.columns(4)
    with col1:
        st.metric("Reputation Score", user_profile["reputation_score"])
    with col2:
        st.metric("Contributions", user_profile["contributions"])
    with col3:
        st.metric("Expertise Areas", len(user_profile["expertise_areas"]))
    with col4:
        st.metric("Active Reviews", 3)  # Mock data

    # Expertise areas
    st.subheader("Research Expertise")
    current_expertise = user_profile["expertise_areas"]
    all_expertise = [
        "polymer_chemistry",
        "spectroscopy",
        "machine_learning",
        "materials_science",
        "degradation_mechanisms",
        "sustainability",
    ]

    new_expertise = st.multiselect(
        "Update your expertise areas:", all_expertise, default=current_expertise
    )

    if new_expertise != current_expertise:
        user_profile["expertise_areas"] = new_expertise
        st.success("Expertise areas updated!")

    # Pending reviews
    st.subheader("Pending Reviews")

    pending_reviews = [
        {
            "type": "hypothesis",
            "title": "Spectral band shifts indicate polymer chain scission",
            "author": "Dr. James Smith",
            "deadline": "2024-03-10",
            "complexity": "medium",
        },
        {
            "type": "dataset",
            "title": "UV-degraded PP sample collection",
            "author": "Prof. Lisa Wang",
            "deadline": "2024-03-15",
            "complexity": "low",
        },
    ]

    for review in pending_reviews:
        with st.expander(f"πŸ“‹ {review['title']} (Due: {review['deadline']})"):
            st.write(f"**Type:** {review['type'].title()}")
            st.write(f"**Author:** {review['author']}")
            st.write(f"**Complexity:** {review['complexity'].title()}")
            st.write(f"**Deadline:** {review['deadline']}")

            if st.button("Start Review", key=f"start_{review['title'][:20]}"):
                st.info("Review interface would open here.")

    # Review quality metrics
    st.subheader("Review Quality Metrics")

    metrics = {
        "Average Review Time": "2.3 days",
        "Review Accuracy": "94%",
        "Helpfulness Score": "4.7/5",
        "Reviews Completed": "28",
    }

    metric_cols = st.columns(len(metrics))
    for i, (metric, value) in enumerate(metrics.items()):
        with metric_cols[i]:
            st.metric(metric, value)


def render_knowledge_sharing():
    """Render knowledge sharing and collaboration tools"""
    st.header("πŸ“š Knowledge Sharing Hub")

    # Recent contributions
    st.subheader("Recent Community Contributions")

    contributions = [
        {
            "type": "dataset",
            "title": "Marine microplastic spectral library",
            "contributor": "Dr. Sarah Chen",
            "date": "2024-03-05",
            "downloads": 47,
            "rating": 4.8,
        },
        {
            "type": "analysis_script",
            "title": "Automated peak identification algorithm",
            "contributor": "Alex Johnson",
            "date": "2024-03-03",
            "downloads": 23,
            "rating": 4.6,
        },
        {
            "type": "methodology",
            "title": "Best practices for sample preparation",
            "contributor": "Prof. Michael Rodriguez",
            "date": "2024-03-01",
            "downloads": 156,
            "rating": 4.9,
        },
    ]

    for contrib in contributions:
        with st.expander(f"πŸ“Š {contrib['title']} by {contrib['contributor']}"):
            col1, col2 = st.columns([2, 1])

            with col1:
                st.write(f"**Type:** {contrib['type'].replace('_', ' ').title()}")
                st.write(f"**Contributor:** {contrib['contributor']}")
                st.write(f"**Date:** {contrib['date']}")

            with col2:
                st.metric("Downloads", contrib["downloads"])
                st.metric("Rating", f"{contrib['rating']}/5")

            if st.button("Access Resource", key=f"access_{contrib['title'][:20]}"):
                st.success("Resource access granted!")

    # Upload new resource
    st.subheader("βž• Share Knowledge Resource")

    with st.expander("Upload Resource"):
        resource_type = st.selectbox(
            "Resource Type:", ["dataset", "analysis_script", "methodology"]
        )
        resource_title = st.text_input("Resource Title:")
        resource_description = st.text_area("Description:")
        resource_tags = st.multiselect(
            "Tags:",
            [
                "spectroscopy",
                "polymer_aging",
                "machine_learning",
                "data_analysis",
                "methodology",
            ],
        )
        uploaded_file = st.file_uploader("Upload File:")

        if st.button("Share Resource"):
            if (
                resource_title
                and resource_description
                and resource_tags
                and uploaded_file
            ):
                st.success(
                    f"Resource of type '{resource_type}' uploaded and shared with the community!"
                )
            else:
                st.error("Please fill in all required fields.")


def main():
    """Main collaborative research interface"""
    st.set_page_config(
        page_title="POLYMEROS Collaborative Research", page_icon="πŸ‘₯", layout="wide"
    )

    st.title("πŸ‘₯ POLYMEROS Collaborative Research")
    st.markdown("**Community-Driven Research and Validation Platform**")

    # Initialize session
    init_collaborative_session()

    # Sidebar navigation
    st.sidebar.title("🀝 Collaboration Tools")
    page = st.sidebar.selectbox(
        "Select tool:",
        [
            "Research Projects",
            "Community Hypotheses",
            "Peer Review System",
            "Knowledge Sharing",
        ],
    )

    # Display user profile in sidebar
    st.sidebar.markdown("---")
    st.sidebar.markdown("**Your Profile**")
    profile = st.session_state.user_profile
    st.sidebar.write(f"**Name:** {profile['name']}")
    st.sidebar.write(f"**Reputation:** {profile['reputation_score']}")
    st.sidebar.write(f"**Contributions:** {profile['contributions']}")

    # Render selected page
    if page == "Research Projects":
        render_research_projects()
    elif page == "Community Hypotheses":
        render_community_hypotheses()
    elif page == "Peer Review System":
        render_peer_review_system()
    elif page == "Knowledge Sharing":
        render_knowledge_sharing()

    # Footer
    st.sidebar.markdown("---")
    st.sidebar.markdown("**POLYMEROS Community**")
    st.sidebar.markdown("*Advancing polymer science together*")


if __name__ == "__main__":
    main()