Spaces:
Running
Running
File size: 13,757 Bytes
e484a46 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 |
import os
import sys
# Project base path
BASE_DIR = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
sys.path.append(BASE_DIR)
from models.figure2_cnn import Figure2CNN
from models.resnet_cnn import ResNet1D
from scripts.preprocess_dataset import resample_spectrum
from io import StringIO
from glob import glob
from pathlib import Path
import numpy as np
import streamlit as st
import torch
import matplotlib.pyplot as plt
# Label map and label extractor
label_map = {0: "Stable (Unweathered)", 1: "Weathered (Degraded)"}
def label_file(filename: str) -> int:
name = Path(filename).name.lower()
if name.startswith("sta"):
return 0
elif name.startswith("wea"):
return 1
else:
raise ValueError("Unknown label pattern")
# Page configuration
st.set_page_config(
page_title="Polymer Aging Inference",
initial_sidebar_state="collapsed",
page_icon="π¬",
layout="wide")
# Reset status if nothing is uploaded
if 'uploaded_file' not in st.session_state:
st.session_state.status_message = "Awaiting input..."
st.session_state.status_type = "info"
# Title and caption
st.markdown("**π§ͺ Raman Spectrum Classifier**")
st.caption("AI-driven classification of polymer degradation using Raman spectroscopy.")
# Sidebar
with st.sidebar:
st.header("βΉοΈ About This App")
st.markdown("""
Part of the **AIRE 2025 Internship Project**:
`AI-Driven Polymer Aging Prediction and Classification`
Uses Raman spectra and deep learning to predict material degradation.
**Author**: Jaser Hasan
**Mentor**: Dr. Sanmukh Kuppannagari
[π GitHub](https://github.com/dev-jaser/ai-ml-polymer-aging-prediction)
""")
# Metadata for visual badges and metrics
model_metadata = {
"Figure2CNN (Baseline)": {
"emoji": "π¬",
"description": "Baseline CNN with standard filters",
"accuracy": "94.80%",
"f1": "94.30%"
},
"ResNet1D (Advanced)": {
"emoji": "π§ ",
"description": "Residual CNN with deeper feature learning",
"accuracy": "96.20%",
"f1": "95.90%"
}
}
model_config = {
"Figure2CNN (Baseline)": {
"model_class": Figure2CNN,
"model_path": "outputs/figure2_model.pth"
},
"ResNet1D (Advanced)": {
"model_class": ResNet1D,
"model_path": "outputs/resnet_model.pth"
}
}
col1, col2 = st.columns([1.1, 2], gap="large") # optional for cleaner spacing
try:
with col1:
# π Upload + Model Selection
st.markdown("**π Upload Spectrum**")
# [NEW POSITION] π§ Model Selection grounded near data input
with st.container():
st.markdown("**π§ Model Selection**")
# Enhanced model selector
model_labels = [
f"{model_metadata[name]['emoji']} {name}" for name in model_config.keys()
]
selected_label = st.selectbox(
"Choose model architecture:",
model_labels,
key="model_selector"
)
model_choice = selected_label.split(" ", 1)[1]
with st.container():
meta = model_metadata[model_choice]
st.markdown(f"""
**π Model Overview**
*{meta['description']}*
- **Accuracy**: `{meta['accuracy']}`
- **F1 Score**: `{meta['f1']}`
""")
# Model path & check
# [PATCH] Use selected model config
MODEL_PATH = model_config[model_choice]["model_path"]
MODEL_EXISTS = Path(MODEL_PATH).exists()
TARGET_LEN = 500
if not MODEL_EXISTS:
st.error("π« Model file not found. Please train the model first.")
tab1, tab2 = st.tabs(["Upload File", "Use Sample"])
with tab1:
uploaded_file = st.file_uploader("Upload Raman `.txt` spectrum", type="txt")
with tab2:
sample_files = sorted(glob("app/sample_spectra/*.txt"))
sample_options = ["-- Select --"] + sample_files
selected_sample = st.selectbox("Choose a sample:", sample_options)
if selected_sample != "-- Select --":
with open(selected_sample, "r", encoding="utf-8") as f:
file_contents = f.read()
uploaded_file = StringIO(file_contents)
uploaded_file.name = os.path.basename(selected_sample)
# Capture file in session
if uploaded_file is not None:
st.session_state['uploaded_file'] = uploaded_file
st.session_state['filename'] = uploaded_file.name
st.session_state.status_message = f"π File `{uploaded_file.name}` loaded. Ready to infer."
st.session_state.status_type = "success"
st.session_state.inference_run_once = False
# Status banner
st.markdown("**π¦ Pipeline Status**")
status_msg = st.session_state.get("status_message", "Awaiting input...")
status_typ = st.session_state.get("status_type", "info")
if status_typ == "success":
st.success(status_msg)
elif status_typ == "error":
st.error(status_msg)
else:
st.info(status_msg)
# Inference trigger
if st.button("βΆοΈ Run Inference") and 'uploaded_file' in st.session_state and MODEL_EXISTS:
spectrum_name = st.session_state['filename']
uploaded_file = st.session_state['uploaded_file']
uploaded_file.seek(0)
raw_data = uploaded_file.read()
raw_text = raw_data.decode("utf-8") if isinstance(raw_data, bytes) else raw_data
# Parse spectrum
x_vals, y_vals = [], []
for line in raw_text.splitlines():
parts = line.strip().replace(",", " ").split()
numbers = [p for p in parts if p.replace('.', '', 1).replace('-', '', 1).isdigit()]
if len(numbers) >= 2:
try:
x, y = float(numbers[0]), float(numbers[1])
x_vals.append(x)
y_vals.append(y)
except ValueError:
continue
x_raw = np.array(x_vals)
y_raw = np.array(y_vals)
y_resampled = resample_spectrum(x_raw, y_raw, TARGET_LEN)
st.session_state['x_raw'] = x_raw
st.session_state['y_raw'] = y_raw
st.session_state['y_resampled'] = y_resampled
# ---
# Update banner for inference
st.session_state.status_message = f"π Inference running on: `{spectrum_name}`"
st.session_state.status_type = "info"
st.session_state.inference_run_once = True
# Inference
with col2:
if st.session_state.get("inference_run_once", False):
# Plot: Raw + Resampled
x_raw = st.session_state.get("x_raw", None)
y_raw = st.session_state.get("y_raw", None)
y_resampled = st.session_state.get("y_resampled", None)
if x_raw is not None and y_raw is not None and y_resampled is not None:
st.subheader("π Spectrum Overview")
st.write("") # Spacer line for visual breathing room
from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
from PIL import Image
import io
# Create smaller figure
fig, ax = plt.subplots(1, 2, figsize=(8, 2.5), dpi=150)
ax[0].plot(x_raw, y_raw, label="Raw", color="dimgray")
ax[0].set_title("Raw Input")
ax[0].set_xlabel("Wavenumber")
ax[0].set_ylabel("Intensity")
ax[0].legend()
ax[1].plot(np.linspace(min(x_raw), max(x_raw), TARGET_LEN), y_resampled, label="Resampled", color="steelblue")
ax[1].set_title("Resampled")
ax[1].set_xlabel("Wavenumber")
ax[1].set_ylabel("Intensity")
ax[1].legend()
plt.tight_layout()
# Render to image buffer
canvas = FigureCanvas(fig)
buf = io.BytesIO()
canvas.print_png(buf)
buf.seek(0)
# Display fixed-size image
st.image(Image.open(buf), caption="Raw vs. Resampled Spectrum", width=880)
st.session_state['x_raw'] = x_raw
st.session_state['y_raw'] = y_raw
y_resampled = st.session_state.get('y_resampled', None)
if y_resampled is None:
st.error("β Error: Missing resampled spectrum. Please upload and run inference.")
st.stop()
input_tensor = torch.tensor(y_resampled, dtype=torch.float32).unsqueeze(0).unsqueeze(0)
# [PATCH] Load selected model
ModelClass = model_config[model_choice]["model_class"]
model = ModelClass(input_length=TARGET_LEN)
model.load_state_dict(torch.load(MODEL_PATH, map_location="cpu"), strict=False)
model.eval()
with torch.no_grad():
logits = model(input_tensor)
prediction = torch.argmax(logits, dim=1).item()
logits_list = logits.numpy().tolist()[0]
try:
true_label_idx = label_file(spectrum_name)
true_label_str = label_map[true_label_idx]
except Exception:
true_label_idx = None
true_label_str = "Unknown"
predicted_class = label_map.get(prediction, f"Class {prediction}")
import torch.nn.functional as F
probs = F.softmax(torch.tensor(logits_list), dim=0).numpy()
# π¬ Redesigned Prediction Block β Distinguishing Model vs Classification
tab_summary, tab_logits, tab_system, tab_explainer = st.tabs([
"π§ Model Summary", "π¬ Logits", "βοΈ System Info", "π Explanation"])
with tab_summary:
st.markdown("### π§ AI Model Decision Summary")
st.markdown(f"""
**π File Analyzed:** `{spectrum_name}`
**π οΈ Model Chosen:** `{model_choice}`
""")
st.markdown("**π Internal Model Prediction**")
st.write(f"The model believes this sample best matches: **`{predicted_class}`**")
if true_label_idx is not None:
st.caption(f"Ground Truth Label: `{true_label_str}`")
logit_margin = abs(logits_list[0] - logits_list[1])
if logit_margin > 1000:
strength_desc = "VERY STRONG"
elif logit_margin > 250:
strength_desc = "STRONG"
elif logit_margin > 100:
strength_desc = "MODERATE"
else:
strength_desc = "UNCERTAIN"
st.markdown("π§ͺ Final Classification")
st.markdown("**π Model Confidence Estimate**")
st.write(f"**Decision Confidence:** `{strength_desc}` (margin = `{logit_margin:.1f}`)")
st.success(f"This spectrum is classified as: **`{predicted_class}`**")
with tab_logits:
st.markdown("π¬ View Internal Model Output (Logits)")
st.markdown("""
These are the **raw output scores** from the model before making a final prediction.
Higher scores indicate stronger alignment between the input spectrum and that class.
""")
st.json({
label_map.get(i, f"Class {i}"): float(score)
for i, score in enumerate(logits_list)
})
with tab_system:
st.markdown("βοΈ View System Info")
st.json({
"Model Chosen": model_choice,
"Spectrum Length": TARGET_LEN,
"Processing Steps": "Raw Signal β Resampled β Inference"
})
with tab_explainer:
st.markdown("π What Just Happened?")
st.markdown("""
**π Process Overview**
1. π A Raman spectrum was uploaded
2. π Data was standardized
3. π€ AI model analyzed the spectrum
4. π A classification was made
---
**π§ How the Model Operates**
Trained on known polymer conditions, the system detects spectral patterns
indicative of stable or weathered polymers.
---
**β
Why It Matters**
Enables:
- π¬ Material longevity research
- π Recycling assessments
- π± Sustainability decisions
""")
except (ValueError, TypeError, RuntimeError) as e:
st.error(f"β Inference error: {e}") |