Spaces:
Running
Running
File size: 40,391 Bytes
dd49e6b 503f867 dd49e6b 503f867 dd49e6b 503f867 dd49e6b 503f867 dd49e6b 503f867 dd49e6b c58845b dd49e6b c58845b dd49e6b 1afd9f6 dd49e6b df8f4dc dd49e6b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 |
import os
import torch
import streamlit as st
import hashlib
import io
from PIL import Image
import numpy as np
import matplotlib.pyplot as plt
from typing import Union
import time
from config import MODEL_CONFIG, TARGET_LEN, LABEL_MAP
from modules.callbacks import (
on_model_change,
on_input_mode_change,
on_sample_change,
reset_ephemeral_state,
log_message,
clear_batch_results,
)
from core_logic import (
get_sample_files,
load_model,
run_inference,
parse_spectrum_data,
label_file,
)
from modules.callbacks import reset_results
from utils.results_manager import ResultsManager
from utils.confidence import calculate_softmax_confidence
from utils.multifile import process_multiple_files, display_batch_results
from utils.preprocessing import resample_spectrum
def load_css(file_path):
with open(file_path, encoding="utf-8") as f:
st.markdown(f"<style>{f.read()}</style>", unsafe_allow_html=True)
@st.cache_data
def create_spectrum_plot(x_raw, y_raw, x_resampled, y_resampled, _cache_key=None):
"""Create spectrum visualization plot"""
fig, ax = plt.subplots(1, 2, figsize=(13, 5), dpi=100)
# == Raw spectrum ==
ax[0].plot(x_raw, y_raw, label="Raw", color="dimgray", linewidth=1)
ax[0].set_title("Raw Input Spectrum")
ax[0].set_xlabel("Wavenumber (cmβ»ΒΉ)")
ax[0].set_ylabel("Intensity")
ax[0].grid(True, alpha=0.3)
ax[0].legend()
# == Resampled spectrum ==
ax[1].plot(
x_resampled, y_resampled, label="Resampled", color="steelblue", linewidth=1
)
ax[1].set_title(f"Resampled ({len(y_resampled)} points)")
ax[1].set_xlabel("Wavenumber (cmβ»ΒΉ)")
ax[1].set_ylabel("Intensity")
ax[1].grid(True, alpha=0.3)
ax[1].legend()
fig.tight_layout()
# == Convert to image ==
buf = io.BytesIO()
plt.savefig(buf, format="png", bbox_inches="tight", dpi=100)
buf.seek(0)
plt.close(fig) # Prevent memory leaks
return Image.open(buf)
def render_confidence_progress(
probs: np.ndarray,
labels: list[str] = ["Stable", "Weathered"],
highlight_idx: Union[int, None] = None,
side_by_side: bool = True,
):
"""Render Streamlit native progress bars with scientific formatting."""
p = np.asarray(probs, dtype=float)
p = np.clip(p, 0.0, 1.0)
if side_by_side:
cols = st.columns(len(labels))
for i, (lbl, val, col) in enumerate(zip(labels, p, cols)):
with col:
is_highlighted = highlight_idx is not None and i == highlight_idx
label_text = f"**{lbl}**" if is_highlighted else lbl
st.markdown(f"{label_text}: {val*100:.1f}%")
st.progress(int(round(val * 100)))
else:
# Vertical layout for better readability
for i, (lbl, val) in enumerate(zip(labels, p)):
is_highlighted = highlight_idx is not None and i == highlight_idx
# Create a container for each probability
with st.container():
col1, col2 = st.columns([3, 1])
with col1:
if is_highlighted:
st.markdown(f"**{lbl}** β Predicted")
else:
st.markdown(f"{lbl}")
with col2:
st.metric(label="", value=f"{val*100:.1f}%", delta=None)
# Progress bar with conditional styling
if is_highlighted:
st.progress(int(round(val * 100)))
st.caption("π― **Model Prediction**")
else:
st.progress(int(round(val * 100)))
if i < len(labels) - 1: # Add spacing between items
st.markdown("")
def render_kv_grid(d: dict = {}, ncols: int = 2):
if d is None:
d = {}
if not d:
return
items = list(d.items())
cols = st.columns(ncols)
for i, (k, v) in enumerate(items):
with cols[i % ncols]:
st.caption(f"**{k}:** {v}")
def render_model_meta(model_choice: str):
info = MODEL_CONFIG.get(model_choice, {})
emoji = info.get("emoji", "")
desc = info.get("description", "").strip()
acc = info.get("accuracy", "-")
f1 = info.get("f1", "-")
st.caption(f"{emoji} **Model Snapshot** - {model_choice}")
cols = st.columns(2)
with cols[0]:
st.metric("Accuracy", acc)
with cols[1]:
st.metric("F1 Score", f1)
if desc:
st.caption(desc)
def get_confidence_description(logit_margin):
"""Get human-readable confidence description"""
if logit_margin > 1000:
return "VERY HIGH", "π’"
elif logit_margin > 250:
return "HIGH", "π‘"
elif logit_margin > 100:
return "MODERATE", "π "
else:
return "LOW", "π΄"
def render_sidebar():
with st.sidebar:
# Header
st.header("AI-Driven Polymer Classification")
st.caption(
"Predict polymer degradation (Stable vs Weathered) from Raman spectra using validated CNN models. β v0.1"
)
model_labels = [
f"{MODEL_CONFIG[name]['emoji']} {name}" for name in MODEL_CONFIG.keys()
]
selected_label = st.selectbox(
"Choose AI Model",
model_labels,
key="model_select",
on_change=on_model_change,
)
model_choice = selected_label.split(" ", 1)[1]
# ===Compact metadata directly under dropdown===
render_model_meta(model_choice)
# ===Collapsed info to reduce clutter===
with st.expander("About This App", icon=":material/info:", expanded=False):
st.markdown(
"""
**AI-Driven Polymer Aging Prediction and Classification**
**Purpose**: Classify polymer degradation using AI<br>
**Input**: Raman spectroscopy .txt files<br>
**Models**: CNN architectures for binary classification<br>
**Next**: More trained CNNs in evaluation pipeline<br>
**Contributors**<br>
- Dr. Sanmukh Kuppannagari (Mentor)<br>
- Dr. Metin Karailyan (Mentor)<br>
- Jaser Hasan (Author)<br>
**Links**<br>
[HF Space](https://huggingface.co/spaces/dev-jas/polymer-aging-ml)<br>
[GitHub Repository](https://github.com/KLab-AI3/ml-polymer-recycling)
**Citation Figure2CNN (baseline)**
Neo et al., 2023, *Resour. Conserv. Recycl.*, 188, 106718.
[https://doi.org/10.1016/j.resconrec.2022.106718](https://doi.org/10.1016/j.resconrec.2022.106718)
""",
unsafe_allow_html=True,
)
# col1 goes here
# In modules/ui_components.py
def render_input_column():
st.markdown("##### Data Input")
mode = st.radio(
"Input mode",
["Upload File", "Batch Upload", "Sample Data"],
key="input_mode",
horizontal=True,
on_change=on_input_mode_change,
)
# == Input Mode Logic ==
# ... (The if/elif/else block for Upload, Batch, and Sample modes remains exactly the same) ...
# ==Upload tab==
if mode == "Upload File":
upload_key = st.session_state["current_upload_key"]
up = st.file_uploader(
"Upload Raman spectrum (.txt)",
type="txt",
help="Upload a text file with wavenumber and intensity columns",
key=upload_key, # β versioned key
)
# ==Process change immediately (no on_change; simpler & reliable)==
if up is not None:
raw = up.read()
text = raw.decode("utf-8") if isinstance(raw, bytes) else raw
# == only reparse if its a different file|source ==
if (
st.session_state.get("filename") != getattr(up, "name", None)
or st.session_state.get("input_source") != "upload"
):
st.session_state["input_text"] = text
st.session_state["filename"] = getattr(up, "name", None)
st.session_state["input_source"] = "upload"
# Ensure single file mode
st.session_state["batch_mode"] = False
st.session_state["status_message"] = (
f"File '{st.session_state['filename']}' ready for analysis"
)
st.session_state["status_type"] = "success"
reset_results("New file uploaded")
# ==Batch Upload tab==
elif mode == "Batch Upload":
st.session_state["batch_mode"] = True
# --- START: BUG 1 & 3 FIX ---
# Use a versioned key to ensure the file uploader resets properly.
batch_upload_key = f"batch_upload_{st.session_state['uploader_version']}"
uploaded_files = st.file_uploader(
"Upload multiple Raman spectrum files (.txt)",
type="txt",
accept_multiple_files=True,
help="Upload one or more text files with wavenumber and intensity columns.",
key=batch_upload_key,
)
# --- END: BUG 1 & 3 FIX ---
if uploaded_files:
# --- START: Bug 1 Fix ---
# Use a dictionary to keep only unique files based on name and size
unique_files = {(file.name, file.size): file for file in uploaded_files}
unique_file_list = list(unique_files.values())
num_uploaded = len(uploaded_files)
num_unique = len(unique_file_list)
# Optionally, inform the user that duplicates were removed
if num_uploaded > num_unique:
st.info(
f"βΉοΈ {num_uploaded - num_unique} duplicate file(s) were removed."
)
# Use the unique list
st.session_state["batch_files"] = unique_file_list
st.session_state["status_message"] = (
f"{num_unique} ready for batch analysis"
)
st.session_state["status_type"] = "success"
# --- END: Bug 1 Fix ---
else:
st.session_state["batch_files"] = []
# This check prevents resetting the status if files are already staged
if not st.session_state.get("batch_files"):
st.session_state["status_message"] = (
"No files selected for batch processing"
)
st.session_state["status_type"] = "info"
# ==Sample tab==
elif mode == "Sample Data":
st.session_state["batch_mode"] = False
sample_files = get_sample_files()
if sample_files:
options = ["-- Select Sample --"] + [p.name for p in sample_files]
sel = st.selectbox(
"Choose sample spectrum:",
options,
key="sample_select",
on_change=on_sample_change,
)
if sel != "-- Select Sample --":
st.session_state["status_message"] = (
f"π Sample '{sel}' ready for analysis"
)
st.session_state["status_type"] = "success"
else:
st.info("No sample data available")
# == Status box (displays the message) ==
msg = st.session_state.get("status_message", "Ready")
typ = st.session_state.get("status_type", "info")
if typ == "success":
st.success(msg)
elif typ == "error":
st.error(msg)
else:
st.info(msg)
# --- DE-NESTED LOGIC STARTS HERE ---
# This code now runs on EVERY execution, guaranteeing the buttons will appear.
# Safely get model choice from session state
model_choice = st.session_state.get("model_select", " ").split(" ", 1)[1]
model = load_model(model_choice)
# Determine if the app is ready for inference
is_batch_ready = st.session_state.get("batch_mode", False) and st.session_state.get(
"batch_files"
)
is_single_ready = not st.session_state.get(
"batch_mode", False
) and st.session_state.get("input_text")
inference_ready = (is_batch_ready or is_single_ready) and model is not None
# Store for other modules to access
st.session_state["inference_ready"] = inference_ready
# Render buttons
with st.form("analysis_form", clear_on_submit=False):
submitted = st.form_submit_button(
"Run Analysis", type="primary", disabled=not inference_ready
)
st.button(
"Reset All",
on_click=reset_ephemeral_state,
help="Clear all uploaded files and results.",
)
# Handle form submission
if submitted and inference_ready:
if st.session_state.get("batch_mode"):
batch_files = st.session_state.get("batch_files", [])
with st.spinner(f"Processing {len(batch_files)} files ..."):
st.session_state["batch_results"] = process_multiple_files(
uploaded_files=batch_files,
model_choice=model_choice,
load_model_func=load_model,
run_inference_func=run_inference,
label_file_func=label_file,
)
else:
try:
x_raw, y_raw = parse_spectrum_data(st.session_state["input_text"])
x_resampled, y_resampled = resample_spectrum(x_raw, y_raw, TARGET_LEN)
st.session_state.update(
{
"x_raw": x_raw,
"y_raw": y_raw,
"x_resampled": x_resampled,
"y_resampled": y_resampled,
"inference_run_once": True,
}
)
except (ValueError, TypeError) as e:
st.error(f"Error processing spectrum data: {e}")
# col2 goes here
def render_results_column():
# Get the current mode and check for batch results
is_batch_mode = st.session_state.get("batch_mode", False)
has_batch_results = "batch_results" in st.session_state
if is_batch_mode and has_batch_results:
# THEN render the main interactive dashboard from ResultsManager
ResultsManager.display_results_table()
elif st.session_state.get("inference_run_once", False) and not is_batch_mode:
st.markdown("##### Analysis Results")
# Get data from session state
x_raw = st.session_state.get("x_raw")
y_raw = st.session_state.get("y_raw")
x_resampled = st.session_state.get("x_resampled") # β NEW
y_resampled = st.session_state.get("y_resampled")
filename = st.session_state.get("filename", "Unknown")
if all(v is not None for v in [x_raw, y_raw, y_resampled]):
# ===Run inference===
if y_resampled is None:
raise ValueError(
"y_resampled is None. Ensure spectrum data is properly resampled before proceeding."
)
cache_key = hashlib.md5(
f"{y_resampled.tobytes()}{st.session_state.get('model_select', 'Unknown').split(' ', 1)[1]}".encode()
).hexdigest()
prediction, logits_list, probs, inference_time, logits = run_inference(
y_resampled,
(
st.session_state.get("model_select", "").split(" ", 1)[1]
if "model_select" in st.session_state
else None
),
_cache_key=cache_key,
)
if prediction is None:
st.error(
"β Inference failed: Model not loaded. Please check that weights are available."
)
st.stop() # prevents the rest of the code in this block from executing
log_message(
f"Inference completed in {inference_time:.2f}s, prediction: {prediction}"
)
# ===Get ground truth===
true_label_idx = label_file(filename)
true_label_str = (
LABEL_MAP.get(true_label_idx, "Unknown")
if true_label_idx is not None
else "Unknown"
)
# ===Get prediction===
predicted_class = LABEL_MAP.get(int(prediction), f"Class {int(prediction)}")
# Enhanced confidence calculation
if logits is not None:
# Use new softmax-based confidence
probs_np, max_confidence, confidence_level, confidence_emoji = (
calculate_softmax_confidence(logits)
)
confidence_desc = confidence_level
else:
# Fallback to legace method
logit_margin = abs(
(logits_list[0] - logits_list[1])
if logits_list is not None and len(logits_list) >= 2
else 0
)
confidence_desc, confidence_emoji = get_confidence_description(
logit_margin
)
max_confidence = logit_margin / 10.0 # Normalize for display
probs_np = np.array([])
# Store result in results manager for single file too
ResultsManager.add_results(
filename=filename,
model_name=(
st.session_state.get("model_select", "").split(" ", 1)[1]
if "model_select" in st.session_state
else "Unknown"
),
prediction=int(prediction),
predicted_class=predicted_class,
confidence=max_confidence,
logits=logits_list if logits_list else [],
ground_truth=true_label_idx if true_label_idx >= 0 else None,
processing_time=inference_time if inference_time is not None else 0.0,
metadata={
"confidence_level": confidence_desc,
"confidence_emoji": confidence_emoji,
},
)
# ===Precompute Stats===
model_choice = (
st.session_state.get("model_select", "").split(" ", 1)[1]
if "model_select" in st.session_state
else None
)
if not model_choice:
st.error(
"β οΈ Model choice is not defined. Please select a model from the sidebar."
)
st.stop()
model_path = MODEL_CONFIG[model_choice]["path"]
mtime = os.path.getmtime(model_path) if os.path.exists(model_path) else None
file_hash = (
hashlib.md5(open(model_path, "rb").read()).hexdigest()
if os.path.exists(model_path)
else "N/A"
)
# Removed unused variable 'input_tensor'
start_render = time.time()
active_tab = st.selectbox(
"View Results",
["Details", "Technical", "Explanation"],
key="active_tab", # reuse the key you were managing manually
)
if active_tab == "Details":
st.markdown('<div class="expander-results">', unsafe_allow_html=True)
# Use a dynamic and informative title for the expander
with st.expander(f"Results for {filename}", expanded=True):
# --- START: STREAMLINED METRICS ---
# A single, powerful row for the most important results.
key_metric_cols = st.columns(3)
# Metric 1: The Prediction
key_metric_cols[0].metric("Prediction", predicted_class)
# Metric 2: The Confidence (with level in tooltip)
confidence_icon = (
"π’"
if max_confidence >= 0.8
else "π‘" if max_confidence >= 0.6 else "π΄"
)
key_metric_cols[1].metric(
"Confidence",
f"{confidence_icon} {max_confidence:.1%}",
help=f"Confidence Level: {confidence_desc}",
)
# Metric 3: Ground Truth + Correctness (Combined)
if true_label_idx is not None:
is_correct = predicted_class == true_label_str
delta_text = "β
Correct" if is_correct else "β Incorrect"
# Use delta_color="normal" to let the icon provide the visual cue
key_metric_cols[2].metric(
"Ground Truth",
true_label_str,
delta=delta_text,
delta_color="normal",
)
else:
key_metric_cols[2].metric("Ground Truth", "N/A")
st.divider()
# --- END: STREAMLINED METRICS ---
# --- START: CONSOLIDATED CONFIDENCE ANALYSIS ---
st.markdown("##### Probability Breakdown")
# This custom bullet bar logic remains as it is highly specific and valuable
def create_bullet_bar(probability, width=20, predicted=False):
filled_count = int(probability * width)
bar = "β€" * filled_count + "β’" * (width - filled_count)
percentage = f"{probability:.1%}"
pred_marker = "β© Predicted" if predicted else ""
return f"{bar} {percentage} {pred_marker}"
if probs is not None:
stable_prob, weathered_prob = probs[0], probs[1]
else:
st.error(
"β Probability values are missing. Please check the inference process."
)
# Default values to prevent further errors
stable_prob, weathered_prob = 0.0, 0.0
is_stable_predicted, is_weathered_predicted = (
int(prediction) == 0
), (int(prediction) == 1)
st.markdown(
f"""
<div style="font-family: 'Fira Code', monospace;">
Stable (Unweathered)<br>
{create_bullet_bar(stable_prob, predicted=is_stable_predicted)}<br><br>
Weathered (Degraded)<br>
{create_bullet_bar(weathered_prob, predicted=is_weathered_predicted)}
</div>
""",
unsafe_allow_html=True,
)
# --- END: CONSOLIDATED CONFIDENCE ANALYSIS ---
st.divider()
# --- START: CLEAN METADATA FOOTER ---
# Secondary info is now a clean, single-line caption
st.caption(
f"Analyzed with **{st.session_state.get('model_select', 'Unknown')}** in **{inference_time:.2f}s**."
)
# --- END: CLEAN METADATA FOOTER ---
st.markdown("</div>", unsafe_allow_html=True)
elif active_tab == "Technical":
with st.container():
st.markdown("Technical Diagnostics")
# Model performance metrics
with st.container(border=True):
st.markdown("##### **Model Performance**")
tech_col1, tech_col2 = st.columns(2)
with tech_col1:
st.metric("Inference Time", f"{inference_time:.3f}s")
st.metric(
"Input Length",
f"{len(x_raw) if x_raw is not None else 0} points",
)
st.metric("Resampled Length", f"{TARGET_LEN} points")
with tech_col2:
st.metric(
"Model Loaded",
(
"β
Yes"
if st.session_state.get("model_loaded", False)
else "β No"
),
)
st.metric("Device", "CPU")
st.metric("Confidence Score", f"{max_confidence:.3f}")
# Raw logits display
with st.container(border=True):
st.markdown("##### **Raw Model Outputs (Logits)**")
logits_df = {
"Class": (
[
LABEL_MAP.get(i, f"Class {i}")
for i in range(len(logits_list))
]
if logits_list is not None
else []
),
"Logit Value": (
[f"{score:.4f}" for score in logits_list]
if logits_list is not None
else []
),
"Probability": (
[f"{prob:.4f}" for prob in probs_np]
if logits_list is not None and len(probs_np) > 0
else []
),
}
# Display as a simple table format
for i, (cls, logit, prob) in enumerate(
zip(
logits_df["Class"],
logits_df["Logit Value"],
logits_df["Probability"],
)
):
col1, col2, col3 = st.columns([2, 1, 1])
with col1:
if i == prediction:
st.markdown(f"**{cls}** β Predicted")
else:
st.markdown(cls)
with col2:
st.caption(f"Logit: {logit}")
with col3:
st.caption(f"Prob: {prob}")
# Spectrum statistics in organized sections
with st.container(border=True):
st.markdown("##### **Spectrum Analysis**")
spec_cols = st.columns(2)
with spec_cols[0]:
st.markdown("**Original Spectrum:**")
render_kv_grid(
{
"Length": f"{len(x_raw) if x_raw is not None else 0} points",
"Range": (
f"{min(x_raw):.1f} - {max(x_raw):.1f} cmβ»ΒΉ"
if x_raw is not None
else "N/A"
),
"Min Intensity": (
f"{min(y_raw):.2e}"
if y_raw is not None
else "N/A"
),
"Max Intensity": (
f"{max(y_raw):.2e}"
if y_raw is not None
else "N/A"
),
},
ncols=1,
)
with spec_cols[1]:
st.markdown("**Processed Spectrum:**")
render_kv_grid(
{
"Length": f"{TARGET_LEN} points",
"Resampling": "Linear interpolation",
"Normalization": "None",
"Input Shape": f"(1, 1, {TARGET_LEN})",
},
ncols=1,
)
# Model information
with st.container(border=True):
st.markdown("##### **Model Information**")
model_info_cols = st.columns(2)
with model_info_cols[0]:
render_kv_grid(
{
"Architecture": model_choice,
"Path": MODEL_CONFIG[model_choice]["path"],
"Weights Modified": (
time.strftime(
"%Y-%m-%d %H:%M:%S", time.localtime(mtime)
)
if mtime
else "N/A"
),
},
ncols=1,
)
with model_info_cols[1]:
if os.path.exists(model_path):
file_hash = hashlib.md5(
open(model_path, "rb").read()
).hexdigest()
render_kv_grid(
{
"Weights Hash": f"{file_hash[:16]}...",
"Output Shape": f"(1, {len(LABEL_MAP)})",
"Activation": "Softmax",
},
ncols=1,
)
# Debug logs (collapsed by default)
with st.expander("π Debug Logs", expanded=False):
log_content = "\n".join(
st.session_state.get("log_messages", [])
)
if log_content.strip():
st.code(log_content, language="text")
else:
st.caption("No debug logs available")
elif active_tab == "Explanation":
with st.container():
st.markdown("### π Methodology & Interpretation")
# Process explanation
st.markdown("Analysis Pipeline")
process_steps = [
"π **Data Upload**: Raman spectrum file loaded and validated",
"π **Preprocessing**: Spectrum parsed and resampled to 500 data points using linear interpolation",
"π§ **AI Inference**: Convolutional Neural Network analyzes spectral patterns and molecular signatures",
"π **Classification**: Binary prediction with confidence scoring using softmax probabilities",
"β
**Validation**: Ground truth comparison (when available from filename)",
]
for step in process_steps:
st.markdown(step)
st.markdown("---")
# Model interpretation
st.markdown("#### Scientific Interpretation")
interp_col1, interp_col2 = st.columns(2)
with interp_col1:
st.markdown("**Stable (Unweathered) Polymers:**")
st.info(
"""
- Well-preserved molecular structure
- Minimal oxidative degradation
- Characteristic Raman peaks intact
-
itable for recycling applications
"""
)
with interp_col2:
st.markdown("**Weathered (Degraded) Polymers:**")
st.warning(
"""
- Oxidized molecular bonds
- Surface degradation present
- Altered spectral signatures
- May require additional processing
"""
)
st.markdown("---")
# Applications
st.markdown("#### Research Applications")
applications = [
"π¬ **Material Science**: Polymer degradation studies",
"β»οΈ **Recycling Research**: Viability assessment for circular economy",
"π± **Environmental Science**: Microplastic weathering analysis",
"π **Quality Control**: Manufacturing process monitoring",
"π **Longevity Studies**: Material aging prediction",
]
for app in applications:
st.markdown(app)
# Technical details
# MODIFIED: Wrap the expander in a div with the 'expander-advanced' class
st.markdown(
'<div class="expander-advanced">', unsafe_allow_html=True
)
with st.expander("π§ Technical Details", expanded=False):
st.markdown(
"""
**Model Architecture:**
- Convolutional layers for feature extraction
- Residual connections for gradient flow
- Fully connected layers for classification
- Softmax activation for probability distribution
**Performance Metrics:**
- Accuracy: 94.8-96.2% on validation set
- F1-Score: 94.3-95.9% across classes
- Robust to spectral noise and baseline variations
**Data Processing:**
- Input: Raman spectra (any length)
- Resampling: Linear interpolation to 500 points
- Normalization: None (preserves intensity relationships)
"""
)
st.markdown(
"</div>", unsafe_allow_html=True
) # Close the wrapper div
render_time = time.time() - start_render
log_message(
f"col2 rendered in {render_time:.2f}s, active tab: {active_tab}"
)
with st.expander("Spectrum Preprocessing Results", expanded=False):
st.caption("<br>Spectral Analysis", unsafe_allow_html=True)
# Add some context about the preprocessing
st.markdown(
"""
**Preprocessing Overview:**
- **Original Spectrum**: Raw Raman data as uploaded
- **Resampled Spectrum**: Data interpolated to 500 points for model input
- **Purpose**: Ensures consistent input dimensions for neural network
"""
)
# Create and display plot
cache_key = hashlib.md5(
f"{(x_raw.tobytes() if x_raw is not None else b'')}"
f"{(y_raw.tobytes() if y_raw is not None else b'')}"
f"{(x_resampled.tobytes() if x_resampled is not None else b'')}"
f"{(y_resampled.tobytes() if y_resampled is not None else b'')}".encode()
).hexdigest()
spectrum_plot = create_spectrum_plot(
x_raw, y_raw, x_resampled, y_resampled, _cache_key=cache_key
)
st.image(
spectrum_plot,
caption="Raman Spectrum: Raw vs Processed",
use_container_width=True,
)
else:
st.markdown(
"""
##### How to Get Started
1. **Select an AI Model:** Use the dropdown menu in the sidebar to choose a model.
2. **Provide Your Data:** Select one of the three input modes:
- **Upload File:** Analyze a single spectrum.
- **Batch Upload:** Process multiple files at once.
- **Sample Data:** Explore functionality with pre-loaded examples.
3. **Run Analysis:** Click the "Run Analysis" button to generate the classification results.
---
##### Supported Data Format
- **File Type:** Plain text (`.txt`)
- **Content:** Must contain two columns: `wavenumber` and `intensity`.
- **Separators:** Values can be separated by spaces or commas.
- **Preprocessing:** Your spectrum will be automatically resampled to 500 data points to match the model's input requirements.
---
##### Example Applications
- π¬ Research on polymer degradation
- β»οΈ Recycling feasibility assessment
- π± Sustainability impact studies
- π Quality control in manufacturing
"""
)
else:
# ===Getting Started===
st.markdown(
"""
##### How to Get Started
1. **Select an AI Model:** Use the dropdown menu in the sidebar to choose a model.
2. **Provide Your Data:** Select one of the three input modes:
- **Upload File:** Analyze a single spectrum.
- **Batch Upload:** Process multiple files at once.
- **Sample Data:** Explore functionality with pre-loaded examples.
3. **Run Analysis:** Click the "Run Analysis" button to generate the classification results.
---
##### Supported Data Format
- **File Type:** Plain text (`.txt`)
- **Content:** Must contain two columns: `wavenumber` and `intensity`.
- **Separators:** Values can be separated by spaces or commas.
- **Preprocessing:** Your spectrum will be automatically resampled to 500 data points to match the model's input requirements.
---
##### Example Applications
- π¬ Research on polymer degradation
- β»οΈ Recycling feasibility assessment
- π± Sustainability impact studies
- π Quality control in manufacturing
"""
)
|