File size: 40,391 Bytes
dd49e6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
503f867
dd49e6b
503f867
 
 
 
dd49e6b
 
503f867
 
 
 
dd49e6b
 
503f867
 
dd49e6b
 
 
 
 
 
 
503f867
dd49e6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c58845b
dd49e6b
 
 
 
c58845b
dd49e6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1afd9f6
 
dd49e6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
df8f4dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd49e6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
import os
import torch
import streamlit as st
import hashlib
import io
from PIL import Image
import numpy as np
import matplotlib.pyplot as plt
from typing import Union
import time
from config import MODEL_CONFIG, TARGET_LEN, LABEL_MAP
from modules.callbacks import (
    on_model_change,
    on_input_mode_change,
    on_sample_change,
    reset_ephemeral_state,
    log_message,
    clear_batch_results,
)
from core_logic import (
    get_sample_files,
    load_model,
    run_inference,
    parse_spectrum_data,
    label_file,
)
from modules.callbacks import reset_results
from utils.results_manager import ResultsManager
from utils.confidence import calculate_softmax_confidence
from utils.multifile import process_multiple_files, display_batch_results
from utils.preprocessing import resample_spectrum


def load_css(file_path):
    with open(file_path, encoding="utf-8") as f:
        st.markdown(f"<style>{f.read()}</style>", unsafe_allow_html=True)


@st.cache_data
def create_spectrum_plot(x_raw, y_raw, x_resampled, y_resampled, _cache_key=None):
    """Create spectrum visualization plot"""
    fig, ax = plt.subplots(1, 2, figsize=(13, 5), dpi=100)

    # == Raw spectrum ==
    ax[0].plot(x_raw, y_raw, label="Raw", color="dimgray", linewidth=1)
    ax[0].set_title("Raw Input Spectrum")
    ax[0].set_xlabel("Wavenumber (cm⁻¹)")
    ax[0].set_ylabel("Intensity")
    ax[0].grid(True, alpha=0.3)
    ax[0].legend()

    # == Resampled spectrum ==
    ax[1].plot(
        x_resampled, y_resampled, label="Resampled", color="steelblue", linewidth=1
    )
    ax[1].set_title(f"Resampled ({len(y_resampled)} points)")
    ax[1].set_xlabel("Wavenumber (cm⁻¹)")
    ax[1].set_ylabel("Intensity")
    ax[1].grid(True, alpha=0.3)
    ax[1].legend()

    fig.tight_layout()
    # == Convert to image ==
    buf = io.BytesIO()
    plt.savefig(buf, format="png", bbox_inches="tight", dpi=100)
    buf.seek(0)
    plt.close(fig)  # Prevent memory leaks

    return Image.open(buf)


def render_confidence_progress(

    probs: np.ndarray,

    labels: list[str] = ["Stable", "Weathered"],

    highlight_idx: Union[int, None] = None,

    side_by_side: bool = True,

):
    """Render Streamlit native progress bars with scientific formatting."""
    p = np.asarray(probs, dtype=float)
    p = np.clip(p, 0.0, 1.0)

    if side_by_side:
        cols = st.columns(len(labels))
        for i, (lbl, val, col) in enumerate(zip(labels, p, cols)):
            with col:
                is_highlighted = highlight_idx is not None and i == highlight_idx
                label_text = f"**{lbl}**" if is_highlighted else lbl
                st.markdown(f"{label_text}: {val*100:.1f}%")
                st.progress(int(round(val * 100)))
    else:
        # Vertical layout for better readability
        for i, (lbl, val) in enumerate(zip(labels, p)):
            is_highlighted = highlight_idx is not None and i == highlight_idx

            # Create a container for each probability
            with st.container():
                col1, col2 = st.columns([3, 1])
                with col1:
                    if is_highlighted:
                        st.markdown(f"**{lbl}** ← Predicted")
                    else:
                        st.markdown(f"{lbl}")
                with col2:
                    st.metric(label="", value=f"{val*100:.1f}%", delta=None)

                # Progress bar with conditional styling
                if is_highlighted:
                    st.progress(int(round(val * 100)))
                    st.caption("🎯 **Model Prediction**")
                else:
                    st.progress(int(round(val * 100)))

                if i < len(labels) - 1:  # Add spacing between items
                    st.markdown("")


def render_kv_grid(d: dict = {}, ncols: int = 2):
    if d is None:
        d = {}
    if not d:
        return
    items = list(d.items())
    cols = st.columns(ncols)
    for i, (k, v) in enumerate(items):
        with cols[i % ncols]:
            st.caption(f"**{k}:** {v}")


def render_model_meta(model_choice: str):
    info = MODEL_CONFIG.get(model_choice, {})
    emoji = info.get("emoji", "")
    desc = info.get("description", "").strip()
    acc = info.get("accuracy", "-")
    f1 = info.get("f1", "-")

    st.caption(f"{emoji} **Model Snapshot** - {model_choice}")
    cols = st.columns(2)
    with cols[0]:
        st.metric("Accuracy", acc)
    with cols[1]:
        st.metric("F1 Score", f1)
    if desc:
        st.caption(desc)


def get_confidence_description(logit_margin):
    """Get human-readable confidence description"""
    if logit_margin > 1000:
        return "VERY HIGH", "🟒"
    elif logit_margin > 250:
        return "HIGH", "🟑"
    elif logit_margin > 100:
        return "MODERATE", "🟠"
    else:
        return "LOW", "πŸ”΄"


def render_sidebar():
    with st.sidebar:
        # Header
        st.header("AI-Driven Polymer Classification")
        st.caption(
            "Predict polymer degradation (Stable vs Weathered) from Raman spectra using validated CNN models. β€” v0.1"
        )
        model_labels = [
            f"{MODEL_CONFIG[name]['emoji']} {name}" for name in MODEL_CONFIG.keys()
        ]
        selected_label = st.selectbox(
            "Choose AI Model",
            model_labels,
            key="model_select",
            on_change=on_model_change,
        )
        model_choice = selected_label.split(" ", 1)[1]

        # ===Compact metadata directly under dropdown===
        render_model_meta(model_choice)

        # ===Collapsed info to reduce clutter===
        with st.expander("About This App", icon=":material/info:", expanded=False):
            st.markdown(
                """

            **AI-Driven Polymer Aging Prediction and Classification**



            **Purpose**: Classify polymer degradation using AI<br>

            **Input**: Raman spectroscopy .txt files<br>

            **Models**: CNN architectures for binary classification<br>

            **Next**: More trained CNNs in evaluation pipeline<br>





            **Contributors**<br>

            - Dr. Sanmukh Kuppannagari (Mentor)<br>

            - Dr. Metin Karailyan (Mentor)<br>

            - Jaser Hasan (Author)<br>





            **Links**<br>

            [HF Space](https://huggingface.co/spaces/dev-jas/polymer-aging-ml)<br>

            [GitHub Repository](https://github.com/KLab-AI3/ml-polymer-recycling)





            **Citation Figure2CNN (baseline)**

            Neo et al., 2023, *Resour. Conserv. Recycl.*, 188, 106718.

            [https://doi.org/10.1016/j.resconrec.2022.106718](https://doi.org/10.1016/j.resconrec.2022.106718)

            """,
                unsafe_allow_html=True,
            )


# col1 goes here

# In modules/ui_components.py


def render_input_column():
    st.markdown("##### Data Input")

    mode = st.radio(
        "Input mode",
        ["Upload File", "Batch Upload", "Sample Data"],
        key="input_mode",
        horizontal=True,
        on_change=on_input_mode_change,
    )

    # == Input Mode Logic ==
    # ... (The if/elif/else block for Upload, Batch, and Sample modes remains exactly the same) ...
    # ==Upload tab==
    if mode == "Upload File":
        upload_key = st.session_state["current_upload_key"]
        up = st.file_uploader(
            "Upload Raman spectrum (.txt)",
            type="txt",
            help="Upload a text file with wavenumber and intensity columns",
            key=upload_key,  # ← versioned key
        )

        # ==Process change immediately (no on_change; simpler & reliable)==
        if up is not None:
            raw = up.read()
            text = raw.decode("utf-8") if isinstance(raw, bytes) else raw
            # == only reparse if its a different file|source ==
            if (
                st.session_state.get("filename") != getattr(up, "name", None)
                or st.session_state.get("input_source") != "upload"
            ):
                st.session_state["input_text"] = text
                st.session_state["filename"] = getattr(up, "name", None)
                st.session_state["input_source"] = "upload"
                # Ensure single file mode
                st.session_state["batch_mode"] = False
                st.session_state["status_message"] = (
                    f"File '{st.session_state['filename']}' ready for analysis"
                )
                st.session_state["status_type"] = "success"
                reset_results("New file uploaded")

    # ==Batch Upload tab==
    elif mode == "Batch Upload":
        st.session_state["batch_mode"] = True
        # --- START: BUG 1 & 3 FIX ---
        # Use a versioned key to ensure the file uploader resets properly.
        batch_upload_key = f"batch_upload_{st.session_state['uploader_version']}"
        uploaded_files = st.file_uploader(
            "Upload multiple Raman spectrum files (.txt)",
            type="txt",
            accept_multiple_files=True,
            help="Upload one or more text files with wavenumber and intensity columns.",
            key=batch_upload_key,
        )
        # --- END: BUG 1 & 3 FIX ---

        if uploaded_files:
            # --- START: Bug 1 Fix ---
            # Use a dictionary to keep only unique files based on name and size
            unique_files = {(file.name, file.size): file for file in uploaded_files}
            unique_file_list = list(unique_files.values())

            num_uploaded = len(uploaded_files)
            num_unique = len(unique_file_list)

            # Optionally, inform the user that duplicates were removed
            if num_uploaded > num_unique:
                st.info(
                    f"ℹ️ {num_uploaded - num_unique} duplicate file(s) were removed."
                )

            # Use the unique list
            st.session_state["batch_files"] = unique_file_list
            st.session_state["status_message"] = (
                f"{num_unique} ready for batch analysis"
            )
            st.session_state["status_type"] = "success"
            # --- END: Bug 1 Fix ---
        else:
            st.session_state["batch_files"] = []
            # This check prevents resetting the status if files are already staged
            if not st.session_state.get("batch_files"):
                st.session_state["status_message"] = (
                    "No files selected for batch processing"
                )
                st.session_state["status_type"] = "info"

    # ==Sample tab==
    elif mode == "Sample Data":
        st.session_state["batch_mode"] = False
        sample_files = get_sample_files()
        if sample_files:
            options = ["-- Select Sample --"] + [p.name for p in sample_files]
            sel = st.selectbox(
                "Choose sample spectrum:",
                options,
                key="sample_select",
                on_change=on_sample_change,
            )
            if sel != "-- Select Sample --":
                st.session_state["status_message"] = (
                    f"πŸ“ Sample '{sel}' ready for analysis"
                )
                st.session_state["status_type"] = "success"
        else:
            st.info("No sample data available")
    # == Status box (displays the message) ==
    msg = st.session_state.get("status_message", "Ready")
    typ = st.session_state.get("status_type", "info")
    if typ == "success":
        st.success(msg)
    elif typ == "error":
        st.error(msg)
    else:
        st.info(msg)

    # --- DE-NESTED LOGIC STARTS HERE ---
    # This code now runs on EVERY execution, guaranteeing the buttons will appear.

    # Safely get model choice from session state
    model_choice = st.session_state.get("model_select", " ").split(" ", 1)[1]
    model = load_model(model_choice)

    # Determine if the app is ready for inference
    is_batch_ready = st.session_state.get("batch_mode", False) and st.session_state.get(
        "batch_files"
    )
    is_single_ready = not st.session_state.get(
        "batch_mode", False
    ) and st.session_state.get("input_text")
    inference_ready = (is_batch_ready or is_single_ready) and model is not None
    # Store for other modules to access
    st.session_state["inference_ready"] = inference_ready

    # Render buttons
    with st.form("analysis_form", clear_on_submit=False):
        submitted = st.form_submit_button(
            "Run Analysis", type="primary", disabled=not inference_ready
        )
    st.button(
        "Reset All",
        on_click=reset_ephemeral_state,
        help="Clear all uploaded files and results.",
    )

    # Handle form submission
    if submitted and inference_ready:
        if st.session_state.get("batch_mode"):
            batch_files = st.session_state.get("batch_files", [])
            with st.spinner(f"Processing {len(batch_files)} files ..."):
                st.session_state["batch_results"] = process_multiple_files(
                    uploaded_files=batch_files,
                    model_choice=model_choice,
                    load_model_func=load_model,
                    run_inference_func=run_inference,
                    label_file_func=label_file,
                )
        else:
            try:
                x_raw, y_raw = parse_spectrum_data(st.session_state["input_text"])
                x_resampled, y_resampled = resample_spectrum(x_raw, y_raw, TARGET_LEN)
                st.session_state.update(
                    {
                        "x_raw": x_raw,
                        "y_raw": y_raw,
                        "x_resampled": x_resampled,
                        "y_resampled": y_resampled,
                        "inference_run_once": True,
                    }
                )
            except (ValueError, TypeError) as e:
                st.error(f"Error processing spectrum data: {e}")


# col2 goes here


def render_results_column():
    # Get the current mode and check for batch results
    is_batch_mode = st.session_state.get("batch_mode", False)
    has_batch_results = "batch_results" in st.session_state

    if is_batch_mode and has_batch_results:
        # THEN render the main interactive dashboard from ResultsManager
        ResultsManager.display_results_table()

    elif st.session_state.get("inference_run_once", False) and not is_batch_mode:
        st.markdown("##### Analysis Results")
        # Get data from session state
        x_raw = st.session_state.get("x_raw")
        y_raw = st.session_state.get("y_raw")
        x_resampled = st.session_state.get("x_resampled")  # ← NEW
        y_resampled = st.session_state.get("y_resampled")
        filename = st.session_state.get("filename", "Unknown")

        if all(v is not None for v in [x_raw, y_raw, y_resampled]):
            # ===Run inference===
            if y_resampled is None:
                raise ValueError(
                    "y_resampled is None. Ensure spectrum data is properly resampled before proceeding."
                )
            cache_key = hashlib.md5(
                f"{y_resampled.tobytes()}{st.session_state.get('model_select', 'Unknown').split(' ', 1)[1]}".encode()
            ).hexdigest()
            prediction, logits_list, probs, inference_time, logits = run_inference(
                y_resampled,
                (
                    st.session_state.get("model_select", "").split(" ", 1)[1]
                    if "model_select" in st.session_state
                    else None
                ),
                _cache_key=cache_key,
            )
            if prediction is None:
                st.error(
                    "❌ Inference failed: Model not loaded. Please check that weights are available."
                )
                st.stop()  # prevents the rest of the code in this block from executing

            log_message(
                f"Inference completed in {inference_time:.2f}s, prediction: {prediction}"
            )

            # ===Get ground truth===
            true_label_idx = label_file(filename)
            true_label_str = (
                LABEL_MAP.get(true_label_idx, "Unknown")
                if true_label_idx is not None
                else "Unknown"
            )
            # ===Get prediction===
            predicted_class = LABEL_MAP.get(int(prediction), f"Class {int(prediction)}")

            # Enhanced confidence calculation
            if logits is not None:
                # Use new softmax-based confidence
                probs_np, max_confidence, confidence_level, confidence_emoji = (
                    calculate_softmax_confidence(logits)
                )
                confidence_desc = confidence_level
            else:
                # Fallback to legace method
                logit_margin = abs(
                    (logits_list[0] - logits_list[1])
                    if logits_list is not None and len(logits_list) >= 2
                    else 0
                )
                confidence_desc, confidence_emoji = get_confidence_description(
                    logit_margin
                )
                max_confidence = logit_margin / 10.0  # Normalize for display
                probs_np = np.array([])

            # Store result in results manager for single file too
            ResultsManager.add_results(
                filename=filename,
                model_name=(
                    st.session_state.get("model_select", "").split(" ", 1)[1]
                    if "model_select" in st.session_state
                    else "Unknown"
                ),
                prediction=int(prediction),
                predicted_class=predicted_class,
                confidence=max_confidence,
                logits=logits_list if logits_list else [],
                ground_truth=true_label_idx if true_label_idx >= 0 else None,
                processing_time=inference_time if inference_time is not None else 0.0,
                metadata={
                    "confidence_level": confidence_desc,
                    "confidence_emoji": confidence_emoji,
                },
            )

            # ===Precompute Stats===
            model_choice = (
                st.session_state.get("model_select", "").split(" ", 1)[1]
                if "model_select" in st.session_state
                else None
            )
            if not model_choice:
                st.error(
                    "⚠️ Model choice is not defined. Please select a model from the sidebar."
                )
                st.stop()
            model_path = MODEL_CONFIG[model_choice]["path"]
            mtime = os.path.getmtime(model_path) if os.path.exists(model_path) else None
            file_hash = (
                hashlib.md5(open(model_path, "rb").read()).hexdigest()
                if os.path.exists(model_path)
                else "N/A"
            )
            # Removed unused variable 'input_tensor'

            start_render = time.time()

            active_tab = st.selectbox(
                "View Results",
                ["Details", "Technical", "Explanation"],
                key="active_tab",  # reuse the key you were managing manually
            )

            if active_tab == "Details":
                st.markdown('<div class="expander-results">', unsafe_allow_html=True)
                # Use a dynamic and informative title for the expander
                with st.expander(f"Results for {filename}", expanded=True):

                    # --- START: STREAMLINED METRICS ---
                    # A single, powerful row for the most important results.
                    key_metric_cols = st.columns(3)

                    # Metric 1: The Prediction
                    key_metric_cols[0].metric("Prediction", predicted_class)

                    # Metric 2: The Confidence (with level in tooltip)
                    confidence_icon = (
                        "🟒"
                        if max_confidence >= 0.8
                        else "🟑" if max_confidence >= 0.6 else "πŸ”΄"
                    )
                    key_metric_cols[1].metric(
                        "Confidence",
                        f"{confidence_icon} {max_confidence:.1%}",
                        help=f"Confidence Level: {confidence_desc}",
                    )

                    # Metric 3: Ground Truth + Correctness (Combined)
                    if true_label_idx is not None:
                        is_correct = predicted_class == true_label_str
                        delta_text = "βœ… Correct" if is_correct else "❌ Incorrect"
                        # Use delta_color="normal" to let the icon provide the visual cue
                        key_metric_cols[2].metric(
                            "Ground Truth",
                            true_label_str,
                            delta=delta_text,
                            delta_color="normal",
                        )
                    else:
                        key_metric_cols[2].metric("Ground Truth", "N/A")

                    st.divider()
                    # --- END: STREAMLINED METRICS ---

                    # --- START: CONSOLIDATED CONFIDENCE ANALYSIS ---
                    st.markdown("##### Probability Breakdown")

                    # This custom bullet bar logic remains as it is highly specific and valuable
                    def create_bullet_bar(probability, width=20, predicted=False):
                        filled_count = int(probability * width)
                        bar = "β–€" * filled_count + "β–’" * (width - filled_count)
                        percentage = f"{probability:.1%}"
                        pred_marker = "↩ Predicted" if predicted else ""
                        return f"{bar} {percentage}    {pred_marker}"

                    if probs is not None:
                        stable_prob, weathered_prob = probs[0], probs[1]
                    else:
                        st.error(
                            "❌ Probability values are missing. Please check the inference process."
                        )
                        # Default values to prevent further errors
                        stable_prob, weathered_prob = 0.0, 0.0
                    is_stable_predicted, is_weathered_predicted = (
                        int(prediction) == 0
                    ), (int(prediction) == 1)

                    st.markdown(
                        f"""

                        <div style="font-family: 'Fira Code', monospace;">

                            Stable (Unweathered)<br>

                            {create_bullet_bar(stable_prob, predicted=is_stable_predicted)}<br><br>

                            Weathered (Degraded)<br>

                            {create_bullet_bar(weathered_prob, predicted=is_weathered_predicted)}

                        </div>

                    """,
                        unsafe_allow_html=True,
                    )
                    # --- END: CONSOLIDATED CONFIDENCE ANALYSIS ---

                    st.divider()

                    # --- START: CLEAN METADATA FOOTER ---
                    # Secondary info is now a clean, single-line caption
                    st.caption(
                        f"Analyzed with **{st.session_state.get('model_select', 'Unknown')}** in **{inference_time:.2f}s**."
                    )
                    # --- END: CLEAN METADATA FOOTER ---

                st.markdown("</div>", unsafe_allow_html=True)

            elif active_tab == "Technical":
                with st.container():
                    st.markdown("Technical Diagnostics")

                    # Model performance metrics
                    with st.container(border=True):
                        st.markdown("##### **Model Performance**")
                        tech_col1, tech_col2 = st.columns(2)

                        with tech_col1:
                            st.metric("Inference Time", f"{inference_time:.3f}s")
                            st.metric(
                                "Input Length",
                                f"{len(x_raw) if x_raw is not None else 0} points",
                            )
                            st.metric("Resampled Length", f"{TARGET_LEN} points")

                        with tech_col2:
                            st.metric(
                                "Model Loaded",
                                (
                                    "βœ… Yes"
                                    if st.session_state.get("model_loaded", False)
                                    else "❌ No"
                                ),
                            )
                            st.metric("Device", "CPU")
                            st.metric("Confidence Score", f"{max_confidence:.3f}")

                    # Raw logits display
                    with st.container(border=True):
                        st.markdown("##### **Raw Model Outputs (Logits)**")
                        logits_df = {
                            "Class": (
                                [
                                    LABEL_MAP.get(i, f"Class {i}")
                                    for i in range(len(logits_list))
                                ]
                                if logits_list is not None
                                else []
                            ),
                            "Logit Value": (
                                [f"{score:.4f}" for score in logits_list]
                                if logits_list is not None
                                else []
                            ),
                            "Probability": (
                                [f"{prob:.4f}" for prob in probs_np]
                                if logits_list is not None and len(probs_np) > 0
                                else []
                            ),
                        }

                        # Display as a simple table format
                        for i, (cls, logit, prob) in enumerate(
                            zip(
                                logits_df["Class"],
                                logits_df["Logit Value"],
                                logits_df["Probability"],
                            )
                        ):
                            col1, col2, col3 = st.columns([2, 1, 1])
                            with col1:
                                if i == prediction:
                                    st.markdown(f"**{cls}** ← Predicted")
                                else:
                                    st.markdown(cls)
                            with col2:
                                st.caption(f"Logit: {logit}")
                            with col3:
                                st.caption(f"Prob: {prob}")

                    # Spectrum statistics in organized sections
                    with st.container(border=True):
                        st.markdown("##### **Spectrum Analysis**")
                        spec_cols = st.columns(2)

                        with spec_cols[0]:
                            st.markdown("**Original Spectrum:**")
                            render_kv_grid(
                                {
                                    "Length": f"{len(x_raw) if x_raw is not None else 0} points",
                                    "Range": (
                                        f"{min(x_raw):.1f} - {max(x_raw):.1f} cm⁻¹"
                                        if x_raw is not None
                                        else "N/A"
                                    ),
                                    "Min Intensity": (
                                        f"{min(y_raw):.2e}"
                                        if y_raw is not None
                                        else "N/A"
                                    ),
                                    "Max Intensity": (
                                        f"{max(y_raw):.2e}"
                                        if y_raw is not None
                                        else "N/A"
                                    ),
                                },
                                ncols=1,
                            )

                        with spec_cols[1]:
                            st.markdown("**Processed Spectrum:**")
                            render_kv_grid(
                                {
                                    "Length": f"{TARGET_LEN} points",
                                    "Resampling": "Linear interpolation",
                                    "Normalization": "None",
                                    "Input Shape": f"(1, 1, {TARGET_LEN})",
                                },
                                ncols=1,
                            )

                    # Model information
                    with st.container(border=True):
                        st.markdown("##### **Model Information**")
                        model_info_cols = st.columns(2)

                        with model_info_cols[0]:
                            render_kv_grid(
                                {
                                    "Architecture": model_choice,
                                    "Path": MODEL_CONFIG[model_choice]["path"],
                                    "Weights Modified": (
                                        time.strftime(
                                            "%Y-%m-%d %H:%M:%S", time.localtime(mtime)
                                        )
                                        if mtime
                                        else "N/A"
                                    ),
                                },
                                ncols=1,
                            )

                        with model_info_cols[1]:
                            if os.path.exists(model_path):
                                file_hash = hashlib.md5(
                                    open(model_path, "rb").read()
                                ).hexdigest()
                                render_kv_grid(
                                    {
                                        "Weights Hash": f"{file_hash[:16]}...",
                                        "Output Shape": f"(1, {len(LABEL_MAP)})",
                                        "Activation": "Softmax",
                                    },
                                    ncols=1,
                                )

                    # Debug logs (collapsed by default)
                    with st.expander("πŸ“‹ Debug Logs", expanded=False):
                        log_content = "\n".join(
                            st.session_state.get("log_messages", [])
                        )
                        if log_content.strip():
                            st.code(log_content, language="text")
                        else:
                            st.caption("No debug logs available")

            elif active_tab == "Explanation":
                with st.container():
                    st.markdown("### πŸ” Methodology & Interpretation")

                    # Process explanation
                    st.markdown("Analysis Pipeline")
                    process_steps = [
                        "πŸ“ **Data Upload**: Raman spectrum file loaded and validated",
                        "πŸ” **Preprocessing**: Spectrum parsed and resampled to 500 data points using linear interpolation",
                        "🧠 **AI Inference**: Convolutional Neural Network analyzes spectral patterns and molecular signatures",
                        "πŸ“Š **Classification**: Binary prediction with confidence scoring using softmax probabilities",
                        "βœ… **Validation**: Ground truth comparison (when available from filename)",
                    ]

                    for step in process_steps:
                        st.markdown(step)

                    st.markdown("---")

                    # Model interpretation
                    st.markdown("#### Scientific Interpretation")

                    interp_col1, interp_col2 = st.columns(2)

                    with interp_col1:
                        st.markdown("**Stable (Unweathered) Polymers:**")
                        st.info(
                            """

                        - Well-preserved molecular structure

                        - Minimal oxidative degradation

                        - Characteristic Raman peaks intact

                        - 

                        itable for recycling applications

                        """
                        )

                    with interp_col2:
                        st.markdown("**Weathered (Degraded) Polymers:**")
                        st.warning(
                            """

                        - Oxidized molecular bonds

                        - Surface degradation present

                        - Altered spectral signatures

                        - May require additional processing

                        """
                        )

                    st.markdown("---")

                    # Applications
                    st.markdown("#### Research Applications")

                    applications = [
                        "πŸ”¬ **Material Science**: Polymer degradation studies",
                        "♻️ **Recycling Research**: Viability assessment for circular economy",
                        "🌱 **Environmental Science**: Microplastic weathering analysis",
                        "🏭 **Quality Control**: Manufacturing process monitoring",
                        "πŸ“ˆ **Longevity Studies**: Material aging prediction",
                    ]

                    for app in applications:
                        st.markdown(app)

                    # Technical details
                    # MODIFIED: Wrap the expander in a div with the 'expander-advanced' class
                    st.markdown(
                        '<div class="expander-advanced">', unsafe_allow_html=True
                    )
                    with st.expander("πŸ”§ Technical Details", expanded=False):
                        st.markdown(
                            """

                        **Model Architecture:**

                        - Convolutional layers for feature extraction

                        - Residual connections for gradient flow

                        - Fully connected layers for classification

                        - Softmax activation for probability distribution



                        **Performance Metrics:**

                        - Accuracy: 94.8-96.2% on validation set

                        - F1-Score: 94.3-95.9% across classes

                        - Robust to spectral noise and baseline variations



                        **Data Processing:**

                        - Input: Raman spectra (any length)

                        - Resampling: Linear interpolation to 500 points

                        - Normalization: None (preserves intensity relationships)

                        """
                        )
                    st.markdown(
                        "</div>", unsafe_allow_html=True
                    )  # Close the wrapper div

                    render_time = time.time() - start_render
                    log_message(
                        f"col2 rendered in {render_time:.2f}s, active tab: {active_tab}"
                    )

            with st.expander("Spectrum Preprocessing Results", expanded=False):
                st.caption("<br>Spectral Analysis", unsafe_allow_html=True)

                # Add some context about the preprocessing
                st.markdown(
                    """

                **Preprocessing Overview:**

                - **Original Spectrum**: Raw Raman data as uploaded

                - **Resampled Spectrum**: Data interpolated to 500 points for model input

                - **Purpose**: Ensures consistent input dimensions for neural network

                """
                )

                # Create and display plot
                cache_key = hashlib.md5(
                    f"{(x_raw.tobytes() if x_raw is not None else b'')}"
                    f"{(y_raw.tobytes() if y_raw is not None else b'')}"
                    f"{(x_resampled.tobytes() if x_resampled is not None else b'')}"
                    f"{(y_resampled.tobytes() if y_resampled is not None else b'')}".encode()
                ).hexdigest()
                spectrum_plot = create_spectrum_plot(
                    x_raw, y_raw, x_resampled, y_resampled, _cache_key=cache_key
                )
                st.image(
                    spectrum_plot,
                    caption="Raman Spectrum: Raw vs Processed",
                    use_container_width=True,
                )

        else:
            st.markdown(
                """

            ##### How to Get Started



            1.  **Select an AI Model:** Use the dropdown menu in the sidebar to choose a model.

            2.  **Provide Your Data:** Select one of the three input modes:

                -   **Upload File:** Analyze a single spectrum.

                -   **Batch Upload:** Process multiple files at once.

                -   **Sample Data:** Explore functionality with pre-loaded examples.

            3.  **Run Analysis:** Click the "Run Analysis" button to generate the classification results.



            ---



            ##### Supported Data Format



            -   **File Type:** Plain text (`.txt`)

            -   **Content:** Must contain two columns: `wavenumber` and `intensity`.

            -   **Separators:** Values can be separated by spaces or commas.

            -   **Preprocessing:** Your spectrum will be automatically resampled to 500 data points to match the model's input requirements.



            ---



            ##### Example Applications

            - πŸ”¬ Research on polymer degradation

            - ♻️ Recycling feasibility assessment

            - 🌱 Sustainability impact studies

            - 🏭 Quality control in manufacturing

            """
            )
    else:
        # ===Getting Started===
        st.markdown(
            """

        ##### How to Get Started



        1.  **Select an AI Model:** Use the dropdown menu in the sidebar to choose a model.

        2.  **Provide Your Data:** Select one of the three input modes:

            -   **Upload File:** Analyze a single spectrum.

            -   **Batch Upload:** Process multiple files at once.

            -   **Sample Data:** Explore functionality with pre-loaded examples.

        3.  **Run Analysis:** Click the "Run Analysis" button to generate the classification results.



        ---



        ##### Supported Data Format



        -   **File Type:** Plain text (`.txt`)

        -   **Content:** Must contain two columns: `wavenumber` and `intensity`.

        -   **Separators:** Values can be separated by spaces or commas.

        -   **Preprocessing:** Your spectrum will be automatically resampled to 500 data points to match the model's input requirements.



        ---



        ##### Example Applications

        - πŸ”¬ Research on polymer degradation

        - ♻️ Recycling feasibility assessment

        - 🌱 Sustainability impact studies

        - 🏭 Quality control in manufacturing

        """
        )