File size: 35,046 Bytes
8dd961f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
"""

Modern ML Architecture for POLYMEROS

Implements transformer-based models, multi-task learning, and ensemble methods

"""

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader
import numpy as np
import pandas as pd
from typing import Dict, List, Tuple, Optional, Union, Any
from dataclasses import dataclass
from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor
from sklearn.metrics import accuracy_score, mean_squared_error
import xgboost as xgb
from scipy import stats
import warnings
import json
from pathlib import Path


@dataclass
class ModelPrediction:
    """Structured prediction output with uncertainty quantification"""

    prediction: Union[int, float, np.ndarray]
    confidence: float
    uncertainty_epistemic: float  # Model uncertainty
    uncertainty_aleatoric: float  # Data uncertainty
    class_probabilities: Optional[np.ndarray] = None
    feature_importance: Optional[Dict[str, float]] = None
    explanation: Optional[str] = None


@dataclass
class MultiTaskTarget:
    """Multi-task learning targets"""

    classification_target: Optional[int] = None  # Polymer type classification
    degradation_level: Optional[float] = None  # Continuous degradation score
    property_predictions: Optional[Dict[str, float]] = None  # Material properties
    aging_rate: Optional[float] = None  # Rate of aging prediction


class SpectralTransformerBlock(nn.Module):
    """Transformer block optimized for spectral data"""

    def __init__(self, d_model: int, num_heads: int, d_ff: int, dropout: float = 0.1):
        super().__init__()
        self.d_model = d_model
        self.num_heads = num_heads

        # Multi-head attention
        self.attention = nn.MultiheadAttention(
            d_model, num_heads, dropout=dropout, batch_first=True
        )

        # Feed-forward network
        self.ff_network = nn.Sequential(
            nn.Linear(d_model, d_ff),
            nn.ReLU(),
            nn.Dropout(dropout),
            nn.Linear(d_ff, d_model),
        )

        # Layer normalization
        self.ln1 = nn.LayerNorm(d_model)
        self.ln2 = nn.LayerNorm(d_model)

        # Dropout
        self.dropout = nn.Dropout(dropout)

    def forward(

        self, x: torch.Tensor, mask: Optional[torch.Tensor] = None

    ) -> torch.Tensor:
        # Self-attention with residual connection
        attn_output, attention_weights = self.attention(x, x, x, attn_mask=mask)
        x = self.ln1(x + self.dropout(attn_output))

        # Feed-forward with residual connection
        ff_output = self.ff_network(x)
        x = self.ln2(x + self.dropout(ff_output))

        return x


class SpectralPositionalEncoding(nn.Module):
    """Positional encoding adapted for spectral wavenumber information"""

    def __init__(self, d_model: int, max_seq_length: int = 2000):
        super().__init__()
        self.d_model = d_model

        # Create positional encoding matrix
        pe = torch.zeros(max_seq_length, d_model)
        position = torch.arange(0, max_seq_length, dtype=torch.float).unsqueeze(1)

        # Use different frequencies for different dimensions
        div_term = torch.exp(
            torch.arange(0, d_model, 2).float() * (-np.log(10000.0) / d_model)
        )

        pe[:, 0::2] = torch.sin(position * div_term)
        pe[:, 1::2] = torch.cos(position * div_term)

        self.register_buffer("pe", pe.unsqueeze(0))

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        seq_len = x.size(1)
        return x + self.pe[:, :seq_len, :].to(x.device)


class SpectralTransformer(nn.Module):
    """Transformer architecture optimized for spectral analysis"""

    def __init__(

        self,

        input_dim: int = 1,

        d_model: int = 256,

        num_heads: int = 8,

        num_layers: int = 6,

        d_ff: int = 1024,

        max_seq_length: int = 2000,

        num_classes: int = 2,

        dropout: float = 0.1,

    ):
        super().__init__()

        self.d_model = d_model
        self.num_classes = num_classes

        # Input projection
        self.input_projection = nn.Linear(input_dim, d_model)

        # Positional encoding
        self.pos_encoding = SpectralPositionalEncoding(d_model, max_seq_length)

        # Transformer layers
        self.transformer_layers = nn.ModuleList(
            [
                SpectralTransformerBlock(d_model, num_heads, d_ff, dropout)
                for _ in range(num_layers)
            ]
        )

        # Classification head
        self.classification_head = nn.Sequential(
            nn.Linear(d_model, d_model // 2),
            nn.ReLU(),
            nn.Dropout(dropout),
            nn.Linear(d_model // 2, num_classes),
        )

        # Regression heads for multi-task learning
        self.degradation_head = nn.Sequential(
            nn.Linear(d_model, d_model // 2),
            nn.ReLU(),
            nn.Dropout(dropout),
            nn.Linear(d_model // 2, 1),
        )

        self.property_head = nn.Sequential(
            nn.Linear(d_model, d_model // 2),
            nn.ReLU(),
            nn.Dropout(dropout),
            nn.Linear(d_model // 2, 5),  # Predict 5 material properties
        )

        # Uncertainty estimation layers
        self.uncertainty_head = nn.Sequential(
            nn.Linear(d_model, d_model // 4),
            nn.ReLU(),
            nn.Linear(d_model // 4, 2),  # Epistemic and aleatoric uncertainty
        )

        # Attention pooling for sequence aggregation
        self.attention_pool = nn.MultiheadAttention(d_model, 1, batch_first=True)
        self.pool_query = nn.Parameter(torch.randn(1, 1, d_model))

        self.dropout = nn.Dropout(dropout)

    def forward(

        self, x: torch.Tensor, return_attention: bool = False

    ) -> Dict[str, torch.Tensor]:
        batch_size, seq_len, input_dim = x.shape

        # Input projection and positional encoding
        x = self.input_projection(x)  # (batch, seq_len, d_model)
        x = self.pos_encoding(x)
        x = self.dropout(x)

        # Store attention weights if requested
        attention_weights = []

        # Pass through transformer layers
        for layer in self.transformer_layers:
            x = layer(x)

        # Attention pooling to get sequence representation
        query = self.pool_query.expand(batch_size, -1, -1)
        pooled_output, pool_attention = self.attention_pool(query, x, x)
        pooled_output = pooled_output.squeeze(1)  # (batch, d_model)

        if return_attention:
            attention_weights.append(pool_attention)

        # Multi-task outputs
        outputs = {}

        # Classification output
        classification_logits = self.classification_head(pooled_output)
        outputs["classification_logits"] = classification_logits
        outputs["classification_probs"] = F.softmax(classification_logits, dim=-1)

        # Degradation prediction
        degradation_pred = self.degradation_head(pooled_output)
        outputs["degradation_prediction"] = degradation_pred

        # Property predictions
        property_pred = self.property_head(pooled_output)
        outputs["property_predictions"] = property_pred

        # Uncertainty estimation
        uncertainty_pred = self.uncertainty_head(pooled_output)
        outputs["uncertainty_epistemic"] = torch.nn.Softplus()(uncertainty_pred[:, 0])
        outputs["uncertainty_aleatoric"] = F.softplus(uncertainty_pred[:, 1])

        if return_attention:
            outputs["attention_weights"] = attention_weights

        return outputs


class BayesianUncertaintyEstimator:
    """Bayesian uncertainty quantification using Monte Carlo dropout"""

    def __init__(self, model: nn.Module, num_samples: int = 100):
        self.model = model
        self.num_samples = num_samples

    def enable_dropout(self, model: nn.Module):
        """Enable dropout for uncertainty estimation"""
        for module in model.modules():
            if isinstance(module, nn.Dropout):
                module.train()

    def predict_with_uncertainty(self, x: torch.Tensor) -> Dict[str, torch.Tensor]:
        """

        Predict with uncertainty quantification using Monte Carlo dropout



        Args:

            x: Input tensor



        Returns:

            Predictions with uncertainty estimates

        """
        self.model.eval()
        self.enable_dropout(self.model)

        predictions = []
        classification_probs = []
        degradation_preds = []
        uncertainty_estimates = []

        with torch.no_grad():
            for _ in range(self.num_samples):
                output = self.model(x)
                predictions.append(output["classification_probs"])
                classification_probs.append(output["classification_probs"])
                degradation_preds.append(output["degradation_prediction"])
                uncertainty_estimates.append(
                    torch.stack(
                        [
                            output["uncertainty_epistemic"],
                            output["uncertainty_aleatoric"],
                        ],
                        dim=1,
                    )
                )

        # Stack predictions
        classification_stack = torch.stack(
            classification_probs, dim=0
        )  # (num_samples, batch, classes)
        degradation_stack = torch.stack(degradation_preds, dim=0)
        uncertainty_stack = torch.stack(uncertainty_estimates, dim=0)

        # Calculate statistics
        mean_classification = classification_stack.mean(dim=0)
        std_classification = classification_stack.std(dim=0)

        mean_degradation = degradation_stack.mean(dim=0)
        std_degradation = degradation_stack.std(dim=0)

        mean_uncertainty = uncertainty_stack.mean(dim=0)

        # Calculate epistemic uncertainty (model uncertainty)
        epistemic_uncertainty = std_classification.mean(dim=1)

        # Calculate aleatoric uncertainty (data uncertainty)
        aleatoric_uncertainty = mean_uncertainty[:, 1]

        return {
            "mean_classification": mean_classification,
            "std_classification": std_classification,
            "mean_degradation": mean_degradation,
            "std_degradation": std_degradation,
            "epistemic_uncertainty": epistemic_uncertainty,
            "aleatoric_uncertainty": aleatoric_uncertainty,
            "total_uncertainty": epistemic_uncertainty + aleatoric_uncertainty,
        }


class EnsembleModel:
    """Ensemble model combining multiple approaches"""

    def __init__(self):
        self.models = {}
        self.weights = {}
        self.is_fitted = False

    def add_transformer_model(self, model: SpectralTransformer, weight: float = 1.0):
        """Add transformer model to ensemble"""
        self.models["transformer"] = model
        self.weights["transformer"] = weight

    def add_random_forest(self, n_estimators: int = 100, weight: float = 1.0):
        """Add Random Forest to ensemble"""
        self.models["random_forest_clf"] = RandomForestClassifier(
            n_estimators=n_estimators, random_state=42, oob_score=True
        )
        self.models["random_forest_reg"] = RandomForestRegressor(
            n_estimators=n_estimators, random_state=42, oob_score=True
        )
        self.weights["random_forest"] = weight

    def add_xgboost(self, weight: float = 1.0):
        """Add XGBoost to ensemble"""
        self.models["xgboost_clf"] = xgb.XGBClassifier(
            n_estimators=100, random_state=42, eval_metric="logloss"
        )
        self.models["xgboost_reg"] = xgb.XGBRegressor(n_estimators=100, random_state=42)
        self.weights["xgboost"] = weight

    def fit(

        self,

        X: np.ndarray,

        y_classification: np.ndarray,

        y_degradation: Optional[np.ndarray] = None,

    ):
        """

        Fit ensemble models



        Args:

            X: Input features (flattened spectra for traditional ML models)

            y_classification: Classification targets

            y_degradation: Degradation targets (optional)

        """
        # Fit Random Forest
        if "random_forest_clf" in self.models:
            self.models["random_forest_clf"].fit(X, y_classification)
            if y_degradation is not None:
                self.models["random_forest_reg"].fit(X, y_degradation)

        # Fit XGBoost
        if "xgboost_clf" in self.models:
            self.models["xgboost_clf"].fit(X, y_classification)
            if y_degradation is not None:
                self.models["xgboost_reg"].fit(X, y_degradation)

        self.is_fitted = True

    def predict(

        self, X: np.ndarray, X_transformer: Optional[torch.Tensor] = None

    ) -> ModelPrediction:
        """

        Ensemble prediction with uncertainty quantification



        Args:

            X: Input features for traditional ML models

            X_transformer: Input tensor for transformer model



        Returns:

            Ensemble prediction with uncertainty

        """
        if not self.is_fitted and "transformer" not in self.models:
            raise ValueError(
                "Ensemble must be fitted or contain pre-trained transformer"
            )

        predictions = {}
        classification_probs = []
        degradation_preds = []
        model_weights = []

        # Random Forest predictions
        if (
            "random_forest_clf" in self.models
            and self.models["random_forest_clf"] is not None
        ):
            rf_probs = self.models["random_forest_clf"].predict_proba(X)
            classification_probs.append(rf_probs)
            model_weights.append(self.weights["random_forest"])

            if "random_forest_reg" in self.models:
                rf_degradation = self.models["random_forest_reg"].predict(X)
                degradation_preds.append(rf_degradation)

        # XGBoost predictions
        if "xgboost_clf" in self.models and self.models["xgboost_clf"] is not None:
            xgb_probs = self.models["xgboost_clf"].predict_proba(X)
            classification_probs.append(xgb_probs)
            model_weights.append(self.weights["xgboost"])

            if "xgboost_reg" in self.models:
                xgb_degradation = self.models["xgboost_reg"].predict(X)
                degradation_preds.append(xgb_degradation)

        # Transformer predictions
        if "transformer" in self.models and X_transformer is not None:
            transformer_output = self.models["transformer"](X_transformer)
            transformer_probs = (
                transformer_output["classification_probs"].detach().numpy()
            )
            classification_probs.append(transformer_probs)
            model_weights.append(self.weights["transformer"])

            transformer_degradation = (
                transformer_output["degradation_prediction"].detach().numpy()
            )
            degradation_preds.append(transformer_degradation.flatten())

        # Weighted ensemble
        if classification_probs:
            model_weights = np.array(model_weights)
            model_weights = model_weights / np.sum(model_weights)  # Normalize

            # Weighted average of probabilities
            ensemble_probs = np.zeros_like(classification_probs[0])
            for i, probs in enumerate(classification_probs):
                ensemble_probs += model_weights[i] * probs

            # Predicted class
            predicted_class = np.argmax(ensemble_probs, axis=1)[0]
            confidence = np.max(ensemble_probs, axis=1)[0]

            # Calculate uncertainty from model disagreement
            prob_variance = np.var([probs[0] for probs in classification_probs], axis=0)
            epistemic_uncertainty = np.mean(prob_variance)

            # Aleatoric uncertainty (average across models)
            aleatoric_uncertainty = 1.0 - confidence  # Simple estimate

            # Degradation prediction
            ensemble_degradation = None
            if degradation_preds:
                ensemble_degradation = np.average(
                    degradation_preds, weights=model_weights, axis=0
                )[0]

        else:
            raise ValueError("No valid predictions could be made")

        # Feature importance (from Random Forest if available)
        feature_importance = None
        if (
            "random_forest_clf" in self.models
            and self.models["random_forest_clf"] is not None
        ):
            importance = self.models["random_forest_clf"].feature_importances_
            # Convert to wavenumber-based importance (assuming spectral input)
            feature_importance = {
                f"wavenumber_{i}": float(importance[i]) for i in range(len(importance))
            }

        return ModelPrediction(
            prediction=predicted_class,
            confidence=confidence,
            uncertainty_epistemic=epistemic_uncertainty,
            uncertainty_aleatoric=aleatoric_uncertainty,
            class_probabilities=ensemble_probs[0],
            feature_importance=feature_importance,
            explanation=self._generate_explanation(
                predicted_class, confidence, ensemble_degradation
            ),
        )

    def _generate_explanation(

        self,

        predicted_class: int,

        confidence: float,

        degradation: Optional[float] = None,

    ) -> str:
        """Generate human-readable explanation"""
        class_names = {0: "Stable (Unweathered)", 1: "Weathered"}
        class_name = class_names.get(predicted_class, f"Class {predicted_class}")

        explanation = f"Predicted class: {class_name} (confidence: {confidence:.3f})"

        if degradation is not None:
            explanation += f"\nEstimated degradation level: {degradation:.3f}"

        if confidence > 0.8:
            explanation += "\nHigh confidence prediction - strong spectral evidence"
        elif confidence > 0.6:
            explanation += "\nModerate confidence - some uncertainty in classification"
        else:
            explanation += "\nLow confidence - significant uncertainty, consider additional analysis"

        return explanation


class MultiTaskLearningFramework:
    """Framework for multi-task learning in polymer analysis"""

    def __init__(self, model: SpectralTransformer):
        self.model = model
        self.task_weights = {
            "classification": 1.0,
            "degradation": 0.5,
            "properties": 0.3,
        }
        self.optimizer = None
        self.scheduler = None

    def setup_training(self, learning_rate: float = 1e-4):
        """Setup optimizer and scheduler"""
        self.optimizer = torch.optim.AdamW(
            self.model.parameters(), lr=learning_rate, weight_decay=0.01
        )
        self.scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
            self.optimizer, T_max=100
        )

    def compute_loss(

        self,

        outputs: Dict[str, torch.Tensor],

        targets: MultiTaskTarget,

        batch_size: int,

    ) -> Dict[str, torch.Tensor]:
        """

        Compute multi-task loss



        Args:

            outputs: Model outputs

            targets: Multi-task targets

            batch_size: Batch size



        Returns:

            Loss components

        """
        losses = {}
        total_loss = 0

        # Classification loss
        if targets.classification_target is not None:
            classification_loss = F.cross_entropy(
                outputs["classification_logits"],
                torch.tensor(
                    [targets.classification_target] * batch_size, dtype=torch.long
                ),
            )
            losses["classification"] = classification_loss
            total_loss += self.task_weights["classification"] * classification_loss

        # Degradation regression loss
        if targets.degradation_level is not None:
            degradation_loss = F.mse_loss(
                outputs["degradation_prediction"].squeeze(),
                torch.tensor(
                    [targets.degradation_level] * batch_size, dtype=torch.float
                ),
            )
            losses["degradation"] = degradation_loss
            total_loss += self.task_weights["degradation"] * degradation_loss

        # Property prediction loss
        if targets.property_predictions is not None:
            property_targets = torch.tensor(
                [[targets.property_predictions.get(f"prop_{i}", 0.0) for i in range(5)]]
                * batch_size,
                dtype=torch.float,
            )
            property_loss = F.mse_loss(
                outputs["property_predictions"], property_targets
            )
            losses["properties"] = property_loss
            total_loss += self.task_weights["properties"] * property_loss

        # Uncertainty regularization
        uncertainty_reg = torch.mean(outputs["uncertainty_epistemic"]) + torch.mean(
            outputs["uncertainty_aleatoric"]
        )
        losses["uncertainty_reg"] = uncertainty_reg
        total_loss += 0.01 * uncertainty_reg  # Small weight for regularization

        losses["total"] = total_loss
        return losses

    def train_step(self, x: torch.Tensor, targets: MultiTaskTarget) -> Dict[str, float]:
        """Single training step"""
        self.model.train()
        if self.optimizer is None:
            raise ValueError(
                "Optimizer is not initialized. Call setup_training() to initialize it."
            )
        self.optimizer.zero_grad()

        outputs = self.model(x)
        losses = self.compute_loss(outputs, targets, x.size(0))

        losses["total"].backward()
        torch.nn.utils.clip_grad_norm_(self.model.parameters(), max_norm=1.0)
        if self.optimizer is None:
            raise ValueError(
                "Optimizer is not initialized. Call setup_training() to initialize it."
            )
        self.optimizer.step()

        return {
            k: float(v.item()) if torch.is_tensor(v) else float(v)
            for k, v in losses.items()
        }


class ModernMLPipeline:
    """Complete modern ML pipeline for polymer analysis"""

    def __init__(self, config: Optional[Dict] = None):
        self.config = config or self._default_config()
        self.transformer_model = None
        self.ensemble_model = None
        self.uncertainty_estimator = None
        self.multi_task_framework = None

    def _default_config(self) -> Dict:
        """Default configuration"""
        return {
            "transformer": {
                "d_model": 256,
                "num_heads": 8,
                "num_layers": 6,
                "d_ff": 1024,
                "dropout": 0.1,
                "num_classes": 2,
            },
            "ensemble": {
                "transformer_weight": 0.4,
                "random_forest_weight": 0.3,
                "xgboost_weight": 0.3,
            },
            "uncertainty": {"num_mc_samples": 50},
            "training": {"learning_rate": 1e-4, "batch_size": 32, "num_epochs": 100},
        }

    def initialize_models(self, input_dim: int = 1, max_seq_length: int = 2000):
        """Initialize all models"""
        # Transformer model
        self.transformer_model = SpectralTransformer(
            input_dim=input_dim,
            d_model=self.config["transformer"]["d_model"],
            num_heads=self.config["transformer"]["num_heads"],
            num_layers=self.config["transformer"]["num_layers"],
            d_ff=self.config["transformer"]["d_ff"],
            max_seq_length=max_seq_length,
            num_classes=self.config["transformer"]["num_classes"],
            dropout=self.config["transformer"]["dropout"],
        )

        # Uncertainty estimator
        self.uncertainty_estimator = BayesianUncertaintyEstimator(
            self.transformer_model,
            num_samples=self.config["uncertainty"]["num_mc_samples"],
        )

        # Multi-task framework
        self.multi_task_framework = MultiTaskLearningFramework(self.transformer_model)

        # Ensemble model
        self.ensemble_model = EnsembleModel()
        self.ensemble_model.add_transformer_model(
            self.transformer_model, self.config["ensemble"]["transformer_weight"]
        )
        self.ensemble_model.add_random_forest(
            weight=self.config["ensemble"]["random_forest_weight"]
        )
        self.ensemble_model.add_xgboost(
            weight=self.config["ensemble"]["xgboost_weight"]
        )

    def train_ensemble(

        self,

        X_flat: np.ndarray,

        X_transformer: torch.Tensor,

        y_classification: np.ndarray,

        y_degradation: Optional[np.ndarray] = None,

    ):
        """Train the ensemble model"""
        if self.ensemble_model is None:
            raise ValueError("Models not initialized. Call initialize_models() first.")

        # Train traditional ML models
        self.ensemble_model.fit(X_flat, y_classification, y_degradation)

        # Setup transformer training
        if self.multi_task_framework is None:
            raise ValueError(
                "Multi-task framework is not initialized. Call initialize_models() first."
            )
        self.multi_task_framework.setup_training(
            self.config["training"]["learning_rate"]
        )

        print(
            "Ensemble training completed (transformer training would require full training loop)"
        )

    def predict_with_all_methods(

        self, X_flat: np.ndarray, X_transformer: torch.Tensor

    ) -> Dict[str, Any]:
        """

        Comprehensive prediction using all methods



        Args:

            X_flat: Flattened spectral data for traditional ML

            X_transformer: Tensor format for transformer



        Returns:

            Complete prediction results

        """
        results = {}

        # Ensemble prediction
        if self.ensemble_model is None:
            raise ValueError(
                "Ensemble model is not initialized. Call initialize_models() first."
            )
        ensemble_pred = self.ensemble_model.predict(X_flat, X_transformer)
        results["ensemble"] = ensemble_pred

        # Transformer with uncertainty
        if self.transformer_model is not None:
            if self.uncertainty_estimator is None:
                raise ValueError(
                    "Uncertainty estimator is not initialized. Call initialize_models() first."
                )
            uncertainty_pred = self.uncertainty_estimator.predict_with_uncertainty(
                X_transformer
            )
            results["transformer_uncertainty"] = uncertainty_pred

        # Individual model predictions for comparison
        individual_predictions = {}

        if (
            self.ensemble_model is not None
            and "random_forest_clf" in self.ensemble_model.models
        ):
            rf_pred = self.ensemble_model.models["random_forest_clf"].predict_proba(
                X_flat
            )[0]
            individual_predictions["random_forest"] = rf_pred

        if "xgboost_clf" in self.ensemble_model.models:
            xgb_pred = self.ensemble_model.models["xgboost_clf"].predict_proba(X_flat)[
                0
            ]
            individual_predictions["xgboost"] = xgb_pred

        results["individual_models"] = individual_predictions

        return results

    def get_model_insights(

        self, X_flat: np.ndarray, X_transformer: torch.Tensor

    ) -> Dict[str, Any]:
        """

        Generate insights about model behavior and predictions



        Args:

            X_flat: Flattened spectral data

            X_transformer: Transformer input format



        Returns:

            Model insights and explanations

        """
        insights = {}

        # Feature importance from Random Forest
        if "random_forest_clf" in self.ensemble_model.models:
            if (
                self.ensemble_model
                and "random_forest_clf" in self.ensemble_model.models
                and self.ensemble_model.models["random_forest_clf"] is not None
            ):
                rf_importance = self.ensemble_model.models[
                    "random_forest_clf"
                ].feature_importances_
            else:
                rf_importance = None
            if rf_importance is not None:
                top_features = np.argsort(rf_importance)[-10:][::-1]
            else:
                top_features = []
            insights["top_spectral_regions"] = {
                f"wavenumber_{idx}": float(rf_importance[idx])
                for idx in top_features
                if rf_importance is not None
            }

        # Attention weights from transformer
        if self.transformer_model is not None:
            self.transformer_model.eval()
            with torch.no_grad():
                outputs = self.transformer_model(X_transformer, return_attention=True)
                if "attention_weights" in outputs:
                    insights["attention_patterns"] = outputs["attention_weights"]

        # Uncertainty analysis
        predictions = self.predict_with_all_methods(X_flat, X_transformer)
        if "transformer_uncertainty" in predictions:
            uncertainty_data = predictions["transformer_uncertainty"]
            insights["uncertainty_analysis"] = {
                "epistemic_uncertainty": float(
                    uncertainty_data["epistemic_uncertainty"].mean()
                ),
                "aleatoric_uncertainty": float(
                    uncertainty_data["aleatoric_uncertainty"].mean()
                ),
                "total_uncertainty": float(
                    uncertainty_data["total_uncertainty"].mean()
                ),
                "confidence_level": (
                    "high"
                    if uncertainty_data["total_uncertainty"].mean() < 0.1
                    else (
                        "medium"
                        if uncertainty_data["total_uncertainty"].mean() < 0.3
                        else "low"
                    )
                ),
            }

        # Model agreement analysis
        if "individual_models" in predictions:
            individual = predictions["individual_models"]
            agreements = []
            for model1_name, model1_pred in individual.items():
                for model2_name, model2_pred in individual.items():
                    if model1_name != model2_name:
                        # Calculate agreement based on prediction similarity
                        agreement = 1.0 - np.abs(model1_pred - model2_pred).mean()
                        agreements.append(agreement)

            insights["model_agreement"] = {
                "average_agreement": float(np.mean(agreements)) if agreements else 0.0,
                "agreement_level": (
                    "high"
                    if np.mean(agreements) > 0.8
                    else "medium" if np.mean(agreements) > 0.6 else "low"
                ),
            }

        return insights

    def save_models(self, save_path: Path):
        """Save trained models"""
        save_path = Path(save_path)
        save_path.mkdir(parents=True, exist_ok=True)

        # Save transformer model
        if self.transformer_model is not None:
            torch.save(
                self.transformer_model.state_dict(), save_path / "transformer_model.pth"
            )

        # Save configuration
        with open(save_path / "config.json", "w") as f:
            json.dump(self.config, f, indent=2)

        print(f"Models saved to {save_path}")

    def load_models(self, load_path: Path):
        """Load pre-trained models"""
        load_path = Path(load_path)

        # Load configuration
        with open(load_path / "config.json", "r") as f:
            self.config = json.load(f)

        # Initialize and load transformer
        self.initialize_models()
        if (
            self.transformer_model is not None
            and (load_path / "transformer_model.pth").exists()
        ):
            self.transformer_model.load_state_dict(
                torch.load(load_path / "transformer_model.pth", map_location="cpu")
            )
        else:
            raise ValueError(
                "Transformer model is not initialized or model file is missing."
            )

        print(f"Models loaded from {load_path}")


# Utility functions for data preparation
def prepare_transformer_input(

    spectral_data: np.ndarray, max_length: int = 2000

) -> torch.Tensor:
    """

    Prepare spectral data for transformer input



    Args:

        spectral_data: Raw spectral intensities (1D array)

        max_length: Maximum sequence length



    Returns:

        Formatted tensor for transformer

    """
    # Ensure proper length
    if len(spectral_data) > max_length:
        # Downsample
        indices = np.linspace(0, len(spectral_data) - 1, max_length, dtype=int)
        spectral_data = spectral_data[indices]
    elif len(spectral_data) < max_length:
        # Pad with zeros
        padding = np.zeros(max_length - len(spectral_data))
        spectral_data = np.concatenate([spectral_data, padding])

    # Reshape for transformer: (batch_size, sequence_length, features)
    return torch.tensor(spectral_data, dtype=torch.float32).unsqueeze(0).unsqueeze(-1)


def create_multitask_targets(

    classification_label: int,

    degradation_score: Optional[float] = None,

    material_properties: Optional[Dict[str, float]] = None,

) -> MultiTaskTarget:
    """

    Create multi-task learning targets



    Args:

        classification_label: Classification target (0 or 1)

        degradation_score: Continuous degradation score [0, 1]

        material_properties: Dictionary of material properties



    Returns:

        MultiTaskTarget object

    """
    return MultiTaskTarget(
        classification_target=classification_label,
        degradation_level=degradation_score,
        property_predictions=material_properties,
    )