Spaces:
Running
Running
File size: 58,531 Bytes
dd49e6b 222f7ff dd49e6b 222f7ff dd49e6b 222f7ff dd49e6b 222f7ff dd49e6b 222f7ff dd49e6b 222f7ff dd49e6b 222f7ff dd49e6b 222f7ff dd49e6b 222f7ff dd49e6b 222f7ff dd49e6b 222f7ff dd49e6b 222f7ff dd49e6b 222f7ff dd49e6b 503f867 dd49e6b 503f867 222f7ff dd49e6b 503f867 dd49e6b 503f867 dd49e6b 503f867 dd49e6b 222f7ff dd49e6b 222f7ff dd49e6b 222f7ff dd49e6b 222f7ff dd49e6b 222f7ff dd49e6b 222f7ff dd49e6b 222f7ff dd49e6b 222f7ff dd49e6b 222f7ff dd49e6b 222f7ff dd49e6b c58845b dd49e6b c58845b dd49e6b 222f7ff dd49e6b 222f7ff dd49e6b 222f7ff dd49e6b 222f7ff dd49e6b 222f7ff dd49e6b 222f7ff dd49e6b 1afd9f6 dd49e6b df8f4dc dd49e6b 222f7ff dd49e6b 222f7ff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 |
import os
import torch
import streamlit as st
import hashlib
import io
from PIL import Image
import numpy as np
import matplotlib.pyplot as plt
from typing import Union
import time
from config import MODEL_CONFIG, TARGET_LEN, LABEL_MAP
from modules.callbacks import (
on_model_change,
on_input_mode_change,
on_sample_change,
reset_results,
reset_ephemeral_state,
log_message,
)
from core_logic import (
get_sample_files,
load_model,
run_inference,
parse_spectrum_data,
label_file,
)
from utils.results_manager import ResultsManager
from utils.confidence import calculate_softmax_confidence
from utils.multifile import process_multiple_files, display_batch_results
from utils.preprocessing import resample_spectrum
def load_css(file_path):
with open(file_path, encoding="utf-8") as f:
st.markdown(f"<style>{f.read()}</style>", unsafe_allow_html=True)
@st.cache_data
def create_spectrum_plot(x_raw, y_raw, x_resampled, y_resampled, _cache_key=None):
"""Create spectrum visualization plot"""
fig, ax = plt.subplots(1, 2, figsize=(13, 5), dpi=100)
# Raw spectrum
ax[0].plot(x_raw, y_raw, label="Raw", color="dimgray", linewidth=1)
ax[0].set_title("Raw Input Spectrum")
ax[0].set_xlabel("Wavenumber (cmβ»ΒΉ)")
ax[0].set_ylabel("Intensity")
ax[0].grid(True, alpha=0.3)
ax[0].legend()
# Resampled spectrum
ax[1].plot(
x_resampled, y_resampled, label="Resampled", color="steelblue", linewidth=1
)
ax[1].set_title(f"Resampled ({len(y_resampled)} points)")
ax[1].set_xlabel("Wavenumber (cmβ»ΒΉ)")
ax[1].set_ylabel("Intensity")
ax[1].grid(True, alpha=0.3)
ax[1].legend()
fig.tight_layout()
# Convert to image
buf = io.BytesIO()
plt.savefig(buf, format="png", bbox_inches="tight", dpi=100)
buf.seek(0)
plt.close(fig) # Prevent memory leaks
return Image.open(buf)
# //////////////////////////////////////////
def render_confidence_progress(
probs: np.ndarray,
labels: list[str] = ["Stable", "Weathered"],
highlight_idx: Union[int, None] = None,
side_by_side: bool = True,
):
"""Render Streamlit native progress bars with scientific formatting."""
p = np.asarray(probs, dtype=float)
p = np.clip(p, 0.0, 1.0)
if side_by_side:
cols = st.columns(len(labels))
for i, (lbl, val, col) in enumerate(zip(labels, p, cols)):
with col:
is_highlighted = highlight_idx is not None and i == highlight_idx
label_text = f"**{lbl}**" if is_highlighted else lbl
st.markdown(f"{label_text}: {val*100:.1f}%")
st.progress(int(round(val * 100)))
else:
# Vertical layout for better readability
for i, (lbl, val) in enumerate(zip(labels, p)):
is_highlighted = highlight_idx is not None and i == highlight_idx
# Create a container for each probability
with st.container():
col1, col2 = st.columns([3, 1])
with col1:
if is_highlighted:
st.markdown(f"**{lbl}** β Predicted")
else:
st.markdown(f"{lbl}")
with col2:
st.metric(label="", value=f"{val*100:.1f}%", delta=None)
# Progress bar with conditional styling
if is_highlighted:
st.progress(int(round(val * 100)))
st.caption("π― **Model Prediction**")
else:
st.progress(int(round(val * 100)))
if i < len(labels) - 1: # Add spacing between items
st.markdown("")
from typing import Optional
def render_kv_grid(d: Optional[dict] = None, ncols: int = 2):
if d is None:
d = {}
if not d:
return
items = list(d.items())
cols = st.columns(ncols)
for i, (k, v) in enumerate(items):
with cols[i % ncols]:
st.caption(f"**{k}:** {v}")
# //////////////////////////////////////////
def render_model_meta(model_choice: str):
info = MODEL_CONFIG.get(model_choice, {})
emoji = info.get("emoji", "")
desc = info.get("description", "").strip()
acc = info.get("accuracy", "-")
f1 = info.get("f1", "-")
st.caption(f"{emoji} **Model Snapshot** - {model_choice}")
cols = st.columns(2)
with cols[0]:
st.metric("Accuracy", acc)
with cols[1]:
st.metric("F1 Score", f1)
if desc:
st.caption(desc)
# //////////////////////////////////////////
def get_confidence_description(logit_margin):
"""Get human-readable confidence description"""
if logit_margin > 1000:
return "VERY HIGH", "π’"
elif logit_margin > 250:
return "HIGH", "π‘"
elif logit_margin > 100:
return "MODERATE", "π "
else:
return "LOW", "π΄"
# //////////////////////////////////////////
def render_sidebar():
with st.sidebar:
# Header
st.header("AI-Driven Polymer Classification")
st.caption(
"Predict polymer degradation (Stable vs Weathered) from Raman/FTIR spectra using validated CNN models. β v0.01"
)
# Modality Selection
st.markdown("##### Spectroscopy Modality")
modality = st.selectbox(
"Choose Modality",
["raman", "ftir"],
index=0,
key="modality_select",
format_func=lambda x: f"{'Raman' if x == 'raman' else 'FTIR'}",
)
# Display modality info
if modality == "ftir":
st.info("FTIR mode: 400-4000 cm-1 range with atmospheric correction")
else:
st.info("Raman mode: 200-4000 cm-1 range with standard preprocessing")
# Model selection
st.markdown("##### AI Model Selection")
model_labels = [
f"{MODEL_CONFIG[name]['emoji']} {name}" for name in MODEL_CONFIG.keys()
]
selected_label = st.selectbox(
"Choose AI Model",
model_labels,
key="model_select",
on_change=on_model_change,
)
model_choice = selected_label.split(" ", 1)[1]
# Compact metadata directly under dropdown
render_model_meta(model_choice)
# Collapsed info to reduce clutter
with st.expander("About This App", icon=":material/info:", expanded=False):
st.markdown(
"""
**AI-Driven Polymer Aging Prediction and Classification**
**Purpose**: Classify polymer degradation using AI<br>
**Input**: Raman spectroscopy .txt files<br>
**Models**: CNN architectures for classification<br>
**Modalities**: Raman and FTIR spectroscopy support<br>
**Features**: Multi-model comparison and analysis<br>
**Contributors**<br>
- Dr. Sanmukh Kuppannagari (Mentor)<br>
- Dr. Metin Karailyan (Mentor)<br>
- Jaser Hasan (Author)<br>
**Links**<br>
[HF Space](https://huggingface.co/spaces/dev-jas/polymer-aging-ml)<br>
[GitHub Repository](https://github.com/KLab-AI3/ml-polymer-recycling)
**Citation Figure2CNN (baseline)**
Neo et al., 2023, *Resour. Conserv. Recycl.*, 188, 106718.
[https://doi.org/10.1016/j.resconrec.2022.106718](https://doi.org/10.1016/j.resconrec.2022.106718)
""",
unsafe_allow_html=True,
)
# //////////////////////////////////////////
def render_input_column():
st.markdown("##### Data Input")
mode = st.radio(
"Input mode",
["Upload File", "Batch Upload", "Sample Data"],
key="input_mode",
horizontal=True,
on_change=on_input_mode_change,
)
# == Input Mode Logic ==
if mode == "Upload File":
upload_key = st.session_state["current_upload_key"]
up = st.file_uploader(
"Upload spectrum file (.txt, .csv, .json)",
type=["txt", "csv", "json"],
help="Upload spectroscopy data: TXT (2-column), CSV (with headers), or JSON format",
key=upload_key, # β versioned key
)
# Process change immediately
if up is not None:
raw = up.read()
text = raw.decode("utf-8") if isinstance(raw, bytes) else raw
# only reparse if its a different file|source
if (
st.session_state.get("filename") != getattr(up, "name", None)
or st.session_state.get("input_source") != "upload"
):
st.session_state["input_text"] = text
st.session_state["filename"] = getattr(up, "name", None)
st.session_state["input_source"] = "upload"
# Ensure single file mode
st.session_state["batch_mode"] = False
st.session_state["status_message"] = (
f"File '{st.session_state['filename']}' ready for analysis"
)
st.session_state["status_type"] = "success"
reset_results("New file uploaded")
# Batch Upload tab
elif mode == "Batch Upload":
st.session_state["batch_mode"] = True
# Use a versioned key to ensure the file uploader resets properly.
batch_upload_key = f"batch_upload_{st.session_state['uploader_version']}"
uploaded_files = st.file_uploader(
"Upload multiple spectrum files (.txt, .csv, .json)",
type=["txt", "csv", "json"],
accept_multiple_files=True,
help="Upload spectroscopy files in TXT, CSV, or JSON format.",
key=batch_upload_key,
)
if uploaded_files:
# Use a dictionary to keep only unique files based on name and size
unique_files = {(file.name, file.size): file for file in uploaded_files}
unique_file_list = list(unique_files.values())
num_uploaded = len(uploaded_files)
num_unique = len(unique_file_list)
# Optionally, inform the user that duplicates were removed
if num_uploaded > num_unique:
st.info(f"{num_uploaded - num_unique} duplicate file(s) were removed.")
# Use the unique list
st.session_state["batch_files"] = unique_file_list
st.session_state["status_message"] = (
f"{num_unique} ready for batch analysis"
)
st.session_state["status_type"] = "success"
else:
st.session_state["batch_files"] = []
# This check prevents resetting the status if files are already staged
if not st.session_state.get("batch_files"):
st.session_state["status_message"] = (
"No files selected for batch processing"
)
st.session_state["status_type"] = "info"
# Sample tab
elif mode == "Sample Data":
st.session_state["batch_mode"] = False
sample_files = get_sample_files()
if sample_files:
options = ["-- Select Sample --"] + [p.name for p in sample_files]
sel = st.selectbox(
"Choose sample spectrum:",
options,
key="sample_select",
on_change=on_sample_change,
)
if sel != "-- Select Sample --":
st.session_state["status_message"] = (
f"π Sample '{sel}' ready for analysis"
)
st.session_state["status_type"] = "success"
else:
st.info("No sample data available")
# == Status box (displays the message) ==
msg = st.session_state.get("status_message", "Ready")
typ = st.session_state.get("status_type", "info")
if typ == "success":
st.success(msg)
elif typ == "error":
st.error(msg)
else:
st.info(msg)
# Safely get model choice from session state
model_choice = st.session_state.get("model_select", " ").split(" ", 1)[1]
model = load_model(model_choice)
# Determine if the app is ready for inference
is_batch_ready = st.session_state.get("batch_mode", False) and st.session_state.get(
"batch_files"
)
is_single_ready = not st.session_state.get(
"batch_mode", False
) and st.session_state.get("input_text")
inference_ready = (is_batch_ready or is_single_ready) and model is not None
# Store for other modules to access
st.session_state["inference_ready"] = inference_ready
# Render buttons
with st.form("analysis_form", clear_on_submit=False):
submitted = st.form_submit_button(
"Run Analysis", type="primary", disabled=not inference_ready
)
st.button(
"Reset All",
on_click=reset_ephemeral_state,
help="Clear all uploaded files and results.",
)
# Handle form submission
if submitted and inference_ready:
if st.session_state.get("batch_mode"):
batch_files = st.session_state.get("batch_files", [])
with st.spinner(f"Processing {len(batch_files)} files ..."):
st.session_state["batch_results"] = process_multiple_files(
uploaded_files=batch_files,
model_choice=model_choice,
load_model_func=load_model,
run_inference_func=run_inference,
label_file_func=label_file,
)
else:
try:
x_raw, y_raw = parse_spectrum_data(st.session_state["input_text"])
x_resampled, y_resampled = resample_spectrum(x_raw, y_raw, TARGET_LEN)
st.session_state.update(
{
"x_raw": x_raw,
"y_raw": y_raw,
"x_resampled": x_resampled,
"y_resampled": y_resampled,
"inference_run_once": True,
}
)
except (ValueError, TypeError) as e:
st.error(f"Error processing spectrum data: {e}")
# //////////////////////////////////////////
def render_results_column():
# Get the current mode and check for batch results
is_batch_mode = st.session_state.get("batch_mode", False)
has_batch_results = "batch_results" in st.session_state
if is_batch_mode and has_batch_results:
# THEN render the main interactive dashboard from ResultsManager
ResultsManager.display_results_table()
elif st.session_state.get("inference_run_once", False) and not is_batch_mode:
st.markdown("##### Analysis Results")
# Get data from session state
x_raw = st.session_state.get("x_raw")
y_raw = st.session_state.get("y_raw")
x_resampled = st.session_state.get("x_resampled") # β NEW
y_resampled = st.session_state.get("y_resampled")
filename = st.session_state.get("filename", "Unknown")
if all(v is not None for v in [x_raw, y_raw, y_resampled]):
# Run inference
if y_resampled is None:
raise ValueError(
"y_resampled is None. Ensure spectrum data is properly resampled before proceeding."
)
cache_key = hashlib.md5(
f"{y_resampled.tobytes()}{st.session_state.get('model_select', 'Unknown').split(' ', 1)[1]}".encode()
).hexdigest()
prediction, logits_list, probs, inference_time, logits = run_inference(
y_resampled,
(
st.session_state.get("model_select", "").split(" ", 1)[1]
if "model_select" in st.session_state
else None
),
_cache_key=cache_key,
)
if prediction is None:
st.error(
"β Inference failed: Model not loaded. Please check that weights are available."
)
st.stop() # prevents the rest of the code in this block from executing
log_message(
f"Inference completed in {inference_time:.2f}s, prediction: {prediction}"
)
# Get ground truth
true_label_idx = label_file(filename)
true_label_str = (
LABEL_MAP.get(true_label_idx, "Unknown")
if true_label_idx is not None
else "Unknown"
)
# Get prediction
predicted_class = LABEL_MAP.get(int(prediction), f"Class {int(prediction)}")
# Enhanced confidence calculation
if logits is not None:
# Use new softmax-based confidence
probs_np, max_confidence, confidence_level, confidence_emoji = (
calculate_softmax_confidence(logits)
)
confidence_desc = confidence_level
else:
# Fallback to legacy method
logit_margin = abs(
(logits_list[0] - logits_list[1])
if logits_list is not None and len(logits_list) >= 2
else 0
)
confidence_desc, confidence_emoji = get_confidence_description(
logit_margin
)
max_confidence = logit_margin / 10.0 # Normalize for display
probs_np = np.array([])
# Store result in results manager for single file too
ResultsManager.add_results(
filename=filename,
model_name=(
st.session_state.get("model_select", "").split(" ", 1)[1]
if "model_select" in st.session_state
else "Unknown"
),
prediction=int(prediction),
predicted_class=predicted_class,
confidence=max_confidence,
logits=logits_list if logits_list else [],
ground_truth=true_label_idx if true_label_idx >= 0 else None,
processing_time=inference_time if inference_time is not None else 0.0,
metadata={
"confidence_level": confidence_desc,
"confidence_emoji": confidence_emoji,
},
)
# Precompute Stats
model_choice = (
st.session_state.get("model_select", "").split(" ", 1)[1]
if "model_select" in st.session_state
else None
)
if not model_choice:
st.error(
"β οΈ Model choice is not defined. Please select a model from the sidebar."
)
st.stop()
model_path = MODEL_CONFIG[model_choice]["path"]
mtime = os.path.getmtime(model_path) if os.path.exists(model_path) else None
file_hash = (
hashlib.md5(open(model_path, "rb").read()).hexdigest()
if os.path.exists(model_path)
else "N/A"
)
start_render = time.time()
active_tab = st.selectbox(
"View Results",
["Details", "Technical", "Explanation"],
key="active_tab", # reuse the key you were managing manually
)
if active_tab == "Details":
st.markdown('<div class="expander-results">', unsafe_allow_html=True)
# Use a dynamic and informative title for the expander
with st.expander(f"Results for {filename}", expanded=True):
# --- START: STREAMLINED METRICS ---
# A single, powerful row for the most important results.
key_metric_cols = st.columns(3)
# Metric 1: The Prediction
key_metric_cols[0].metric("Prediction", predicted_class)
# Metric 2: The Confidence (with level in tooltip)
confidence_icon = (
"π’"
if max_confidence >= 0.8
else "π‘" if max_confidence >= 0.6 else "π΄"
)
key_metric_cols[1].metric(
"Confidence",
f"{confidence_icon} {max_confidence:.1%}",
help=f"Confidence Level: {confidence_desc}",
)
# Metric 3: Ground Truth + Correctness (Combined)
if true_label_idx is not None:
is_correct = predicted_class == true_label_str
delta_text = "β
Correct" if is_correct else "β Incorrect"
# Use delta_color="normal" to let the icon provide the visual cue
key_metric_cols[2].metric(
"Ground Truth",
true_label_str,
delta=delta_text,
delta_color="normal",
)
else:
key_metric_cols[2].metric("Ground Truth", "N/A")
st.divider()
# --- END: STREAMLINED METRICS ---
# --- START: CONSOLIDATED CONFIDENCE ANALYSIS ---
st.markdown("##### Probability Breakdown")
# This custom bullet bar logic remains as it is highly specific and valuable
def create_bullet_bar(probability, width=20, predicted=False):
filled_count = int(probability * width)
bar = "β€" * filled_count + "β’" * (width - filled_count)
percentage = f"{probability:.1%}"
pred_marker = "β© Predicted" if predicted else ""
return f"{bar} {percentage} {pred_marker}"
if probs is not None:
stable_prob, weathered_prob = probs[0], probs[1]
else:
st.error(
"β Probability values are missing. Please check the inference process."
)
# Default values to prevent further errors
stable_prob, weathered_prob = 0.0, 0.0
is_stable_predicted, is_weathered_predicted = (
int(prediction) == 0
), (int(prediction) == 1)
st.markdown(
f"""
<div style="font-family: 'Fira Code', monospace;">
Stable (Unweathered)<br>
{create_bullet_bar(stable_prob, predicted=is_stable_predicted)}<br><br>
Weathered (Degraded)<br>
{create_bullet_bar(weathered_prob, predicted=is_weathered_predicted)}
</div>
""",
unsafe_allow_html=True,
)
st.divider()
# METADATA FOOTER
st.caption(
f"Analyzed with **{st.session_state.get('model_select', 'Unknown')}** in **{inference_time:.2f}s**."
)
st.markdown("</div>", unsafe_allow_html=True)
elif active_tab == "Technical":
with st.container():
st.markdown("Technical Diagnostics")
# Model performance metrics
with st.container(border=True):
st.markdown("##### **Model Performance**")
tech_col1, tech_col2 = st.columns(2)
with tech_col1:
st.metric("Inference Time", f"{inference_time:.3f}s")
st.metric(
"Input Length",
f"{len(x_raw) if x_raw is not None else 0} points",
)
st.metric("Resampled Length", f"{TARGET_LEN} points")
with tech_col2:
st.metric(
"Model Loaded",
(
"β
Yes"
if st.session_state.get("model_loaded", False)
else "β No"
),
)
st.metric("Device", "CPU")
st.metric("Confidence Score", f"{max_confidence:.3f}")
# Raw logits display
with st.container(border=True):
st.markdown("##### **Raw Model Outputs (Logits)**")
logits_df = {
"Class": (
[
LABEL_MAP.get(i, f"Class {i}")
for i in range(len(logits_list))
]
if logits_list is not None
else []
),
"Logit Value": (
[f"{score:.4f}" for score in logits_list]
if logits_list is not None
else []
),
"Probability": (
[f"{prob:.4f}" for prob in probs_np]
if logits_list is not None and len(probs_np) > 0
else []
),
}
# Display as a simple table format
for i, (cls, logit, prob) in enumerate(
zip(
logits_df["Class"],
logits_df["Logit Value"],
logits_df["Probability"],
)
):
col1, col2, col3 = st.columns([2, 1, 1])
with col1:
if i == prediction:
st.markdown(f"**{cls}** β Predicted")
else:
st.markdown(cls)
with col2:
st.caption(f"Logit: {logit}")
with col3:
st.caption(f"Prob: {prob}")
# Spectrum statistics in organized sections
with st.container(border=True):
st.markdown("##### **Spectrum Analysis**")
spec_cols = st.columns(2)
with spec_cols[0]:
st.markdown("**Original Spectrum:**")
render_kv_grid(
{
"Length": f"{len(x_raw) if x_raw is not None else 0} points",
"Range": (
f"{min(x_raw):.1f} - {max(x_raw):.1f} cmβ»ΒΉ"
if x_raw is not None
else "N/A"
),
"Min Intensity": (
f"{min(y_raw):.2e}"
if y_raw is not None
else "N/A"
),
"Max Intensity": (
f"{max(y_raw):.2e}"
if y_raw is not None
else "N/A"
),
},
ncols=1,
)
with spec_cols[1]:
st.markdown("**Processed Spectrum:**")
render_kv_grid(
{
"Length": f"{TARGET_LEN} points",
"Resampling": "Linear interpolation",
"Normalization": "None",
"Input Shape": f"(1, 1, {TARGET_LEN})",
},
ncols=1,
)
# Model information
with st.container(border=True):
st.markdown("##### **Model Information**")
model_info_cols = st.columns(2)
with model_info_cols[0]:
render_kv_grid(
{
"Architecture": model_choice,
"Path": MODEL_CONFIG[model_choice]["path"],
"Weights Modified": (
time.strftime(
"%Y-%m-%d %H:%M:%S", time.localtime(mtime)
)
if mtime
else "N/A"
),
},
ncols=1,
)
with model_info_cols[1]:
if os.path.exists(model_path):
file_hash = hashlib.md5(
open(model_path, "rb").read()
).hexdigest()
render_kv_grid(
{
"Weights Hash": f"{file_hash[:16]}...",
"Output Shape": f"(1, {len(LABEL_MAP)})",
"Activation": "Softmax",
},
ncols=1,
)
# Debug logs (collapsed by default)
with st.expander("π Debug Logs", expanded=False):
log_content = "\n".join(
st.session_state.get("log_messages", [])
)
if log_content.strip():
st.code(log_content, language="text")
else:
st.caption("No debug logs available")
elif active_tab == "Explanation":
with st.container():
st.markdown("### π Methodology & Interpretation")
# Process explanation
st.markdown("Analysis Pipeline")
process_steps = [
"π **Data Upload**: Raman spectrum file loaded and validated",
"π **Preprocessing**: Spectrum parsed and resampled to 500 data points using linear interpolation",
"π§ **AI Inference**: Convolutional Neural Network analyzes spectral patterns and molecular signatures",
"π **Classification**: Binary prediction with confidence scoring using softmax probabilities",
"β
**Validation**: Ground truth comparison (when available from filename)",
]
for step in process_steps:
st.markdown(step)
st.markdown("---")
# Model interpretation
st.markdown("#### Scientific Interpretation")
interp_col1, interp_col2 = st.columns(2)
with interp_col1:
st.markdown("**Stable (Unweathered) Polymers:**")
st.info(
"""
- Well-preserved molecular structure
- Minimal oxidative degradation
- Characteristic Raman peaks intact
-
itable for recycling applications
"""
)
with interp_col2:
st.markdown("**Weathered (Degraded) Polymers:**")
st.warning(
"""
- Oxidized molecular bonds
- Surface degradation present
- Altered spectral signatures
- May require additional processing
"""
)
st.markdown("---")
# Applications
st.markdown("#### Research Applications")
applications = [
"π¬ **Material Science**: Polymer degradation studies",
"β»οΈ **Recycling Research**: Viability assessment for circular economy",
"π± **Environmental Science**: Microplastic weathering analysis",
"π **Quality Control**: Manufacturing process monitoring",
"π **Longevity Studies**: Material aging prediction",
]
for app in applications:
st.markdown(app)
# Technical details
# MODIFIED: Wrap the expander in a div with the 'expander-advanced' class
st.markdown(
'<div class="expander-advanced">', unsafe_allow_html=True
)
with st.expander("π§ Technical Details", expanded=False):
st.markdown(
"""
**Model Architecture:**
- Convolutional layers for feature extraction
- Residual connections for gradient flow
- Fully connected layers for classification
- Softmax activation for probability distribution
**Performance Metrics:**
- Accuracy: 94.8-96.2% on validation set
- F1-Score: 94.3-95.9% across classes
- Robust to spectral noise and baseline variations
**Data Processing:**
- Input: Raman spectra (any length)
- Resampling: Linear interpolation to 500 points
- Normalization: None (preserves intensity relationships)
"""
)
st.markdown(
"</div>", unsafe_allow_html=True
) # Close the wrapper div
render_time = time.time() - start_render
log_message(
f"col2 rendered in {render_time:.2f}s, active tab: {active_tab}"
)
with st.expander("Spectrum Preprocessing Results", expanded=False):
st.caption("<br>Spectral Analysis", unsafe_allow_html=True)
# Add some context about the preprocessing
st.markdown(
"""
**Preprocessing Overview:**
- **Original Spectrum**: Raw Raman data as uploaded
- **Resampled Spectrum**: Data interpolated to 500 points for model input
- **Purpose**: Ensures consistent input dimensions for neural network
"""
)
# Create and display plot
cache_key = hashlib.md5(
f"{(x_raw.tobytes() if x_raw is not None else b'')}"
f"{(y_raw.tobytes() if y_raw is not None else b'')}"
f"{(x_resampled.tobytes() if x_resampled is not None else b'')}"
f"{(y_resampled.tobytes() if y_resampled is not None else b'')}".encode()
).hexdigest()
spectrum_plot = create_spectrum_plot(
x_raw, y_raw, x_resampled, y_resampled, _cache_key=cache_key
)
st.image(
spectrum_plot,
caption="Raman Spectrum: Raw vs Processed",
use_container_width=True,
)
else:
st.markdown(
"""
##### How to Get Started
1. **Select an AI Model:** Use the dropdown menu in the sidebar to choose a model.
2. **Provide Your Data:** Select one of the three input modes:
- **Upload File:** Analyze a single spectrum.
- **Batch Upload:** Process multiple files at once.
- **Sample Data:** Explore functionality with pre-loaded examples.
3. **Run Analysis:** Click the "Run Analysis" button to generate the classification results.
---
##### Supported Data Format
- **File Type:** Plain text (`.txt`)
- **Content:** Must contain two columns: `wavenumber` and `intensity`.
- **Separators:** Values can be separated by spaces or commas.
- **Preprocessing:** Your spectrum will be automatically resampled to 500 data points to match the model's input requirements.
---
##### Example Applications
- π¬ Research on polymer degradation
- β»οΈ Recycling feasibility assessment
- π± Sustainability impact studies
- π Quality control in manufacturing
"""
)
else:
# Getting Started
st.markdown(
"""
##### How to Get Started
1. **Select an AI Model:** Use the dropdown menu in the sidebar to choose a model.
2. **Provide Your Data:** Select one of the three input modes:
- **Upload File:** Analyze a single spectrum.
- **Batch Upload:** Process multiple files at once.
- **Sample Data:** Explore functionality with pre-loaded examples.
3. **Run Analysis:** Click the "Run Analysis" button to generate the classification results.
---
##### Supported Data Format
- **File Type:** Plain text (`.txt`)
- **Content:** Must contain two columns: `wavenumber` and `intensity`.
- **Separators:** Values can be separated by spaces or commas.
- **Preprocessing:** Your spectrum will be automatically resampled to 500 data points to match the model's input requirements.
---
##### Example Applications
- π¬ Research on polymer degradation
- β»οΈ Recycling feasibility assessment
- π± Sustainability impact studies
- π Quality control in manufacturing
"""
)
# //////////////////////////////////////////
def render_comparison_tab():
"""Render the multi-model comparison interface"""
import streamlit as st
import matplotlib.pyplot as plt
from models.registry import choices, validate_model_list
from utils.results_manager import ResultsManager
from core_logic import get_sample_files, run_inference, parse_spectrum_data
from utils.preprocessing import preprocess_spectrum
from utils.multifile import parse_spectrum_data
import numpy as np
import time
st.markdown("### Multi-Model Comparison Analysis")
st.markdown(
"Compare predictions across different AI models for comprehensive analysis."
)
# Model selection for comparison
st.markdown("##### Select Models for Comparison")
available_models = choices()
selected_models = st.multiselect(
"Choose models to compare",
available_models,
default=(
available_models[:2] if len(available_models) >= 2 else available_models
),
help="Select 2 or more models to compare their predictions side-by-side",
)
if len(selected_models) < 2:
st.warning("β οΈ Please select at least 2 models for comparison.")
# Input selection for comparison
col1, col2 = st.columns([1, 1.5])
with col1:
st.markdown("###### Input Data")
# File upload for comparison
comparison_file = st.file_uploader(
"Upload spectrum for comparison",
type=["txt", "csv", "json"],
key="comparison_file_upload",
help="Upload a spectrum file to test across all selected models",
)
# Or select sample data
selected_sample = None # Initialize with a default value
sample_files = get_sample_files()
if sample_files:
sample_options = ["-- Select Sample --"] + [p.name for p in sample_files]
selected_sample = st.selectbox(
"Or choose sample data", sample_options, key="comparison_sample_select"
)
# Get modality from session state
modality = st.session_state.get("modality_select", "raman")
st.info(f"Using {modality.upper()} preprocessing parameters")
# Run comparison button
run_comparison = st.button(
"Run Multi-Model Comparison",
type="primary",
disabled=not (
comparison_file
or (sample_files and selected_sample != "-- Select Sample --")
),
)
with col2:
st.markdown("###### Comparison Results")
if run_comparison:
# Determine input source
input_text = None
filename = "unknown"
if comparison_file:
raw = comparison_file.read()
input_text = raw.decode("utf-8") if isinstance(raw, bytes) else raw
filename = comparison_file.name
elif sample_files and selected_sample != "-- Select Sample --":
sample_path = next(p for p in sample_files if p.name == selected_sample)
with open(sample_path, "r") as f:
input_text = f.read()
filename = selected_sample
if input_text:
try:
# Parse spectrum data
x_raw, y_raw = parse_spectrum_data(
str(input_text), filename or "unknown_filename"
)
# Store results
comparison_results = {}
processing_times = {}
progress_bar = st.progress(0)
status_text = st.empty()
for i, model_name in enumerate(selected_models):
status_text.text(f"Running inference with {model_name}...")
start_time = time.time()
# Preprocess spectrum with modality-specific parameters
_, y_processed = preprocess_spectrum(
x_raw, y_raw, modality=modality, target_len=500
)
# Run inference
prediction, logits_list, probs, inference_time, logits = (
run_inference(y_processed, model_name)
)
processing_time = time.time() - start_time
if prediction is not None:
# Map prediction to class name
class_names = ["Stable", "Weathered"]
predicted_class = (
class_names[int(prediction)]
if prediction < len(class_names)
else f"Class_{prediction}"
)
confidence = (
max(probs)
if probs is not None and len(probs) > 0
else 0.0
)
comparison_results[model_name] = {
"prediction": prediction,
"predicted_class": predicted_class,
"confidence": confidence,
"probs": probs if probs is not None else [],
"logits": (
logits_list if logits_list is not None else []
),
"processing_time": processing_time,
}
processing_times[model_name] = processing_time
progress_bar.progress((i + 1) / len(selected_models))
status_text.text("Comparison complete!")
# Display results
if comparison_results:
st.markdown("###### Model Predictions")
# Create comparison table
import pandas as pd
table_data = []
for model_name, result in comparison_results.items():
row = {
"Model": model_name,
"Prediction": result["predicted_class"],
"Confidence": f"{result['confidence']:.3f}",
"Processing Time (s)": f"{result['processing_time']:.3f}",
}
table_data.append(row)
df = pd.DataFrame(table_data)
st.dataframe(df, use_container_width=True)
# Show confidence comparison
st.markdown("##### Confidence Comparison")
conf_col1, conf_col2 = st.columns(2)
with conf_col1:
# Bar chart of confidences
models = list(comparison_results.keys())
confidences = [
comparison_results[m]["confidence"] for m in models
]
fig, ax = plt.subplots(figsize=(8, 5))
bars = ax.bar(
models,
confidences,
alpha=0.7,
color=["steelblue", "orange", "green", "red"][
: len(models)
],
)
ax.set_ylabel("Confidence")
ax.set_title("Model Confidence Comparison")
ax.set_ylim(0, 1)
plt.xticks(rotation=45)
# Add value labels on bars
for bar, conf in zip(bars, confidences):
height = bar.get_height()
ax.text(
bar.get_x() + bar.get_width() / 2.0,
height + 0.01,
f"{conf:.3f}",
ha="center",
va="bottom",
)
plt.tight_layout()
st.pyplot(fig)
with conf_col2:
# Agreement analysis
predictions = [
comparison_results[m]["prediction"] for m in models
]
unique_predictions = set(predictions)
if len(unique_predictions) == 1:
st.success("β
All models agree on the prediction!")
else:
st.warning("β οΈ Models disagree on the prediction")
# Show prediction distribution
from collections import Counter
pred_counts = Counter(predictions)
st.markdown("**Prediction Distribution:**")
for pred, count in pred_counts.items():
class_name = (
["Stable", "Weathered"][pred]
if pred < 2
else f"Class_{pred}"
)
percentage = (count / len(predictions)) * 100
st.write(
f"- {class_name}: {count}/{len(predictions)} models ({percentage:.1f}%)"
)
# Performance metrics
st.markdown("##### Performance Metrics")
perf_col1, perf_col2 = st.columns(2)
with perf_col1:
avg_time = np.mean(list(processing_times.values()))
fastest_model = min(
processing_times.keys(),
key=lambda k: processing_times[k],
)
slowest_model = max(
processing_times.keys(),
key=lambda k: processing_times[k],
)
st.metric("Average Processing Time", f"{avg_time:.3f}s")
st.metric(
"Fastest Model",
f"{fastest_model}",
f"{processing_times[fastest_model]:.3f}s",
)
st.metric(
"Slowest Model",
f"{slowest_model}",
f"{processing_times[slowest_model]:.3f}s",
)
with perf_col2:
most_confident = max(
comparison_results.keys(),
key=lambda k: comparison_results[k]["confidence"],
)
least_confident = min(
comparison_results.keys(),
key=lambda k: comparison_results[k]["confidence"],
)
st.metric(
"Most Confident",
f"{most_confident}",
f"{comparison_results[most_confident]['confidence']:.3f}",
)
st.metric(
"Least Confident",
f"{least_confident}",
f"{comparison_results[least_confident]['confidence']:.3f}",
)
# Store results in session state for potential export
# Store results in session state for potential export
st.session_state["last_comparison_results"] = {
"filename": filename,
"modality": modality,
"models": comparison_results,
"summary": {
"agreement": len(unique_predictions) == 1,
"avg_processing_time": avg_time,
"fastest_model": fastest_model,
"most_confident": most_confident,
},
}
except Exception as e:
st.error(f"Error during comparison: {str(e)}")
# Show recent comparison results if available
elif "last_comparison_results" in st.session_state:
st.info(
"Previous comparison results available. Upload a new file or select a sample to run new comparison."
)
# Show comparison history
comparison_stats = ResultsManager.get_comparison_stats()
if comparison_stats:
st.markdown("#### Comparison History")
with st.expander("View detailed comparison statistics", expanded=False):
# Show model statistics table
stats_data = []
for model_name, stats in comparison_stats.items():
row = {
"Model": model_name,
"Total Predictions": stats["total_predictions"],
"Avg Confidence": f"{stats['avg_confidence']:.3f}",
"Avg Processing Time": f"{stats['avg_processing_time']:.3f}s",
"Accuracy": (
f"{stats['accuracy']:.3f}"
if stats["accuracy"] is not None
else "N/A"
),
}
stats_data.append(row)
if stats_data:
import pandas as pd
stats_df = pd.DataFrame(stats_data)
st.dataframe(stats_df, use_container_width=True)
# Show agreement matrix if multiple models
agreement_matrix = ResultsManager.get_agreement_matrix()
if not agreement_matrix.empty and len(agreement_matrix) > 1:
st.markdown("**Model Agreement Matrix**")
st.dataframe(agreement_matrix.round(3), use_container_width=True)
# Plot agreement heatmap
fig, ax = plt.subplots(figsize=(8, 6))
im = ax.imshow(
agreement_matrix.values, cmap="RdYlGn", vmin=0, vmax=1
)
# Add text annotations
for i in range(len(agreement_matrix)):
for j in range(len(agreement_matrix.columns)):
text = ax.text(
j,
i,
f"{agreement_matrix.iloc[i, j]:.2f}",
ha="center",
va="center",
color="black",
)
ax.set_xticks(range(len(agreement_matrix.columns)))
ax.set_yticks(range(len(agreement_matrix)))
ax.set_xticklabels(agreement_matrix.columns, rotation=45)
ax.set_yticklabels(agreement_matrix.index)
ax.set_title("Model Agreement Matrix")
plt.colorbar(im, ax=ax, label="Agreement Rate")
plt.tight_layout()
st.pyplot(fig)
# Export functionality
if "last_comparison_results" in st.session_state:
st.markdown("##### Export Results")
export_col1, export_col2 = st.columns(2)
with export_col1:
if st.button("π₯ Export Comparison (JSON)"):
import json
results = st.session_state["last_comparison_results"]
json_str = json.dumps(results, indent=2, default=str)
st.download_button(
label="Download JSON",
data=json_str,
file_name=f"comparison_{results['filename'].split('.')[0]}.json",
mime="application/json",
)
with export_col2:
if st.button("π Export Full Report"):
report = ResultsManager.export_comparison_report()
st.download_button(
label="Download Full Report",
data=report,
file_name="model_comparison_report.json",
mime="application/json",
)
# //////////////////////////////////////////
def render_performance_tab():
"""Render the performance tracking and analysis tab."""
from utils.performance_tracker import display_performance_dashboard
display_performance_dashboard()
|