File size: 24,823 Bytes
5824afe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56f1555
5824afe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56f1555
5824afe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
"""

Educational Framework for POLYMEROS

Interactive learning system with adaptive progression and competency tracking

"""

import json
import numpy as np
from typing import Dict, List, Any, Optional, Tuple
from dataclasses import dataclass, asdict
from datetime import datetime
from pathlib import Path
import streamlit as st


@dataclass
class LearningObjective:
    """Individual learning objective with assessment criteria"""

    id: str
    title: str
    description: str
    prerequisite_ids: List[str]
    difficulty_level: int  # 1-5 scale
    estimated_time: int  # minutes
    assessment_criteria: List[str]
    resources: List[Dict[str, str]]

    def to_dict(self) -> Dict[str, Any]:
        return asdict(self)

    @classmethod
    def from_dict(cls, data: Dict[str, Any]) -> "LearningObjective":
        return cls(**data)


@dataclass
class UserProgress:
    """Track user progress and competency"""

    user_id: str
    completed_objectives: List[str]
    competency_scores: Dict[str, float]  # objective_id -> score
    learning_path: List[str]
    session_history: List[Dict[str, Any]]
    preferred_learning_style: str
    current_level: str

    def to_dict(self) -> Dict[str, Any]:
        return asdict(self)

    @classmethod
    def from_dict(cls, data: Dict[str, Any]) -> "UserProgress":
        return cls(**data)


class CompetencyAssessment:
    """Assess user competency through interactive tasks"""

    def __init__(self):
        self.assessment_tasks = {
            "spectroscopy_basics": [
                {
                    "type": "spectrum_identification",
                    "question": "Which spectral region typically shows C-H stretching vibrations?",
                    "options": [
                        "400-1500 cm⁻¹",
                        "1500-1700 cm⁻¹",
                        "2800-3100 cm⁻¹",
                        "3200-3600 cm⁻¹",
                    ],
                    "correct": 2,
                    "explanation": "C-H stretching vibrations appear in the 2800-3100 cm⁻¹ region",
                },
                {
                    "type": "peak_interpretation",
                    "question": "A peak at 1715 cm⁻¹ in a polymer spectrum most likely indicates:",
                    "options": [
                        "C-H bending",
                        "C=O stretching",
                        "O-H stretching",
                        "C-C stretching",
                    ],
                    "correct": 1,
                    "explanation": "C=O stretching typically appears around 1715 cm⁻¹, indicating carbonyl groups",
                },
            ],
            "polymer_aging": [
                {
                    "type": "degradation_mechanism",
                    "question": "Which process is most commonly responsible for polymer degradation?",
                    "options": [
                        "Hydrolysis",
                        "Oxidation",
                        "Thermal decomposition",
                        "UV radiation",
                    ],
                    "correct": 1,
                    "explanation": "Oxidation is the most common degradation mechanism in polymers",
                }
            ],
            "ai_ml_concepts": [
                {
                    "type": "model_interpretation",
                    "question": "What does a confidence score of 0.95 indicate?",
                    "options": [
                        "95% accuracy",
                        "95% probability",
                        "95% certainty",
                        "95% training success",
                    ],
                    "correct": 1,
                    "explanation": "Confidence score represents the model's estimated probability of the prediction",
                }
            ],
        }

    def assess_competency(self, domain: str, user_responses: List[int]) -> float:
        """Assess user competency in a specific domain"""
        if domain not in self.assessment_tasks:
            return 0.0

        tasks = self.assessment_tasks[domain]
        if len(user_responses) != len(tasks):
            # Handle mismatched response count gracefully
            min_len = min(len(user_responses), len(tasks))
            user_responses = user_responses[:min_len]
            tasks = tasks[:min_len]

            if not tasks:  # No tasks to assess
                return 0.0

        correct_count = sum(
            1
            for i, response in enumerate(user_responses)
            if response == tasks[i]["correct"]
        )

        return correct_count / len(tasks)

    def get_personalized_feedback(

        self, domain: str, user_responses: List[int]

    ) -> List[str]:
        """Provide personalized feedback based on assessment results"""
        feedback = []

        if domain not in self.assessment_tasks:
            return ["Domain not found"]

        tasks = self.assessment_tasks[domain]

        # Handle mismatched response count
        min_len = min(len(user_responses), len(tasks))
        user_responses = user_responses[:min_len]
        tasks = tasks[:min_len]

        for i, response in enumerate(user_responses):
            if i < len(tasks):
                task = tasks[i]
                if response == task["correct"]:
                    feedback.append(f"✅ Correct! {task['explanation']}")
                else:
                    feedback.append(f"❌ Incorrect. {task['explanation']}")

        return feedback


class AdaptiveLearningPath:
    """Generate personalized learning paths based on user competency and goals"""

    def __init__(self):
        self.learning_objectives = self._initialize_objectives()
        self.learning_styles = ["visual", "hands-on", "theoretical", "collaborative"]

    def _initialize_objectives(self) -> Dict[str, LearningObjective]:
        """Initialize learning objectives database"""
        objectives = {}

        # Basic spectroscopy objectives
        objectives["spec_001"] = LearningObjective(
            id="spec_001",
            title="Introduction to Vibrational Spectroscopy",
            description="Understand the principles of Raman and FTIR spectroscopy",
            prerequisite_ids=[],
            difficulty_level=1,
            estimated_time=15,
            assessment_criteria=[
                "Identify spectral regions",
                "Explain molecular vibrations",
            ],
            resources=[
                {"type": "tutorial", "url": "interactive_spectroscopy_tutorial"},
                {"type": "video", "url": "spectroscopy_basics_video"},
            ],
        )

        objectives["spec_002"] = LearningObjective(
            id="spec_002",
            title="Spectral Interpretation",
            description="Learn to interpret peaks and identify functional groups",
            prerequisite_ids=["spec_001"],
            difficulty_level=2,
            estimated_time=25,
            assessment_criteria=[
                "Identify functional groups",
                "Interpret peak intensities",
            ],
            resources=[
                {"type": "interactive", "url": "peak_identification_tool"},
                {"type": "practice", "url": "spectral_analysis_exercises"},
            ],
        )

        # Polymer science objectives
        objectives["poly_001"] = LearningObjective(
            id="poly_001",
            title="Polymer Structure and Properties",
            description="Understand polymer chemistry and structure-property relationships",
            prerequisite_ids=[],
            difficulty_level=2,
            estimated_time=20,
            assessment_criteria=[
                "Explain polymer structures",
                "Relate structure to properties",
            ],
            resources=[
                {"type": "tutorial", "url": "polymer_basics_tutorial"},
                {"type": "simulation", "url": "molecular_structure_viewer"},
            ],
        )

        objectives["poly_002"] = LearningObjective(
            id="poly_002",
            title="Polymer Degradation Mechanisms",
            description="Learn about polymer aging and degradation pathways",
            prerequisite_ids=["poly_001"],
            difficulty_level=3,
            estimated_time=30,
            assessment_criteria=[
                "Identify degradation mechanisms",
                "Predict aging effects",
            ],
            resources=[
                {"type": "case_study", "url": "degradation_case_studies"},
                {"type": "interactive", "url": "aging_simulation"},
            ],
        )

        # AI/ML objectives
        objectives["ai_001"] = LearningObjective(
            id="ai_001",
            title="Introduction to Machine Learning",
            description="Basic concepts of ML for scientific applications",
            prerequisite_ids=[],
            difficulty_level=2,
            estimated_time=20,
            assessment_criteria=["Explain ML concepts", "Understand model types"],
            resources=[
                {"type": "tutorial", "url": "ml_basics_tutorial"},
                {"type": "interactive", "url": "model_playground"},
            ],
        )

        objectives["ai_002"] = LearningObjective(
            id="ai_002",
            title="Model Interpretation and Validation",
            description="Understanding model outputs and reliability assessment",
            prerequisite_ids=["ai_001"],
            difficulty_level=3,
            estimated_time=25,
            assessment_criteria=["Interpret model outputs", "Assess model reliability"],
            resources=[
                {"type": "hands-on", "url": "model_interpretation_lab"},
                {"type": "case_study", "url": "validation_examples"},
            ],
        )

        return objectives

    def generate_learning_path(

        self, user_progress: UserProgress, target_competencies: List[str]

    ) -> List[str]:
        """Generate personalized learning path"""
        available_objectives = []

        # Find objectives that meet prerequisites
        for obj_id, objective in self.learning_objectives.items():
            if obj_id not in user_progress.completed_objectives:
                prerequisites_met = all(
                    prereq in user_progress.completed_objectives
                    for prereq in objective.prerequisite_ids
                )
                if prerequisites_met:
                    available_objectives.append(obj_id)

        # Sort by difficulty and relevance to target competencies
        def objective_priority(obj_id):
            obj = self.learning_objectives[obj_id]
            relevance = (
                1.0
                if any(comp in obj.title.lower() for comp in target_competencies)
                else 0.5
            )
            difficulty_penalty = obj.difficulty_level * 0.1
            return relevance - difficulty_penalty

        sorted_objectives = sorted(
            available_objectives, key=objective_priority, reverse=True
        )

        return sorted_objectives[:5]  # Return top 5 recommendations

    def adapt_to_learning_style(

        self, objective_id: str, learning_style: str

    ) -> Dict[str, Any]:
        """Adapt content delivery to user's learning style"""
        objective = self.learning_objectives[objective_id]
        adapted_content = {
            "objective": objective.to_dict(),
            "recommended_approach": "",
            "priority_resources": [],
        }

        if learning_style == "visual":
            adapted_content["recommended_approach"] = (
                "Start with visualizations and diagrams"
            )
            adapted_content["priority_resources"] = [
                r for r in objective.resources if r["type"] in ["video", "simulation"]
            ]

        elif learning_style == "hands-on":
            adapted_content["recommended_approach"] = "Begin with interactive exercises"
            adapted_content["priority_resources"] = [
                r
                for r in objective.resources
                if r["type"] in ["interactive", "hands-on"]
            ]

        elif learning_style == "theoretical":
            adapted_content["recommended_approach"] = (
                "Focus on conceptual understanding"
            )
            adapted_content["priority_resources"] = [
                r
                for r in objective.resources
                if r["type"] in ["tutorial", "case_study"]
            ]

        elif learning_style == "collaborative":
            adapted_content["recommended_approach"] = (
                "Engage with community discussions"
            )
            adapted_content["priority_resources"] = [
                r
                for r in objective.resources
                if r["type"] in ["practice", "case_study"]
            ]

        return adapted_content


class VirtualLaboratory:
    """Simulated laboratory environment for hands-on learning"""

    def __init__(self):
        self.experiments = {
            "polymer_identification": {
                "title": "Polymer Identification Challenge",
                "description": "Identify unknown polymers using spectroscopic analysis",
                "difficulty": 2,
                "estimated_time": 20,
                "learning_objectives": ["spec_002", "poly_001"],
            },
            "aging_simulation": {
                "title": "Polymer Aging Simulation",
                "description": "Observe spectral changes during accelerated aging",
                "difficulty": 3,
                "estimated_time": 30,
                "learning_objectives": ["poly_002", "spec_002"],
            },
            "model_training": {
                "title": "Train Your Own Model",
                "description": "Build and train a classification model",
                "difficulty": 4,
                "estimated_time": 45,
                "learning_objectives": ["ai_001", "ai_002"],
            },
        }

    def run_experiment(

        self, experiment_id: str, user_inputs: Dict[str, Any]

    ) -> Dict[str, Any]:
        """Run virtual experiment with user inputs"""
        if experiment_id not in self.experiments:
            return {"error": "Experiment not found"}

        # The experiment details are not used directly here
        # Removed unused variable assignment

        if experiment_id == "polymer_identification":
            return self._run_identification_experiment(user_inputs)
        elif experiment_id == "aging_simulation":
            return self._run_aging_simulation(user_inputs)
        elif experiment_id == "model_training":
            return self._run_model_training(user_inputs)

        return {"error": "Experiment not implemented"}

    def _run_identification_experiment(self, inputs: Dict[str, Any]) -> Dict[str, Any]:
        """Simulate polymer identification experiment"""
        # Generate synthetic spectrum for learning
        wavenumbers = np.linspace(400, 4000, 500)

        # Simple synthetic spectrum generation
        polymer_type = inputs.get("polymer_type", "PE")
        if polymer_type == "PE":
            # Polyethylene-like spectrum
            spectrum = (
                np.exp(-(((wavenumbers - 2920) / 50) ** 2)) * 0.8
                + np.exp(-(((wavenumbers - 2850) / 30) ** 2)) * 0.6
                + np.random.normal(0, 0.02, len(wavenumbers))
            )
        else:
            # Generic polymer spectrum
            spectrum = np.exp(
                -(((wavenumbers - 1600) / 100) ** 2)
            ) * 0.5 + np.random.normal(0, 0.02, len(wavenumbers))

        return {
            "wavenumbers": wavenumbers.tolist(),
            "spectrum": spectrum.tolist(),
            "hints": [
                "Look for C-H stretching around 2900 cm⁻¹",
                "Check the fingerprint region for characteristic patterns",
            ],
            "success": True,
        }

    def _run_aging_simulation(self, inputs: Dict[str, Any]) -> Dict[str, Any]:
        """Simulate polymer aging experiment"""
        aging_time = inputs.get("aging_time", 0)

        # Generate time-series data showing spectral changes
        wavenumbers = np.linspace(400, 4000, 500)

        # Base spectrum
        base_spectrum = np.exp(-(((wavenumbers - 2900) / 100) ** 2)) * 0.8

        # Add aging effects
        oxidation_peak = np.exp(-(((wavenumbers - 1715) / 20) ** 2)) * (
            aging_time / 100
        )
        degraded_spectrum = base_spectrum + oxidation_peak
        degraded_spectrum += np.random.normal(0, 0.01, len(wavenumbers))

        return {
            "wavenumbers": wavenumbers.tolist(),
            "initial_spectrum": base_spectrum.tolist(),
            "aged_spectrum": degraded_spectrum.tolist(),
            "aging_time": aging_time,
            "observations": [
                "New peak emerging at 1715 cm⁻¹ (carbonyl)",
                f"Aging time: {aging_time} hours",
                "Oxidative degradation pathway activated",
            ],
            "success": True,
        }

    def _run_model_training(self, inputs: Dict[str, Any]) -> Dict[str, Any]:
        """Simulate model training experiment"""
        model_type = inputs.get("model_type", "CNN")
        epochs = inputs.get("epochs", 10)

        # Simulate training metrics
        train_losses = [
            1.0 - i * 0.08 + np.random.normal(0, 0.02) for i in range(epochs)
        ]
        val_accuracies = [
            0.5 + i * 0.04 + np.random.normal(0, 0.01) for i in range(epochs)
        ]

        return {
            "model_type": model_type,
            "epochs": epochs,
            "train_losses": train_losses,
            "val_accuracies": val_accuracies,
            "final_accuracy": val_accuracies[-1],
            "insights": [
                "Model converged after 8 epochs",
                "Validation accuracy plateau suggests good generalization",
                "Consider data augmentation for further improvement",
            ],
            "success": True,
        }


class EducationalFramework:
    """Main educational framework interface"""

    def __init__(self, user_data_dir: str = "user_data"):
        self.user_data_dir = Path(user_data_dir)
        self.user_data_dir.mkdir(exist_ok=True)

        self.competency_assessor = CompetencyAssessment()
        self.learning_path_generator = AdaptiveLearningPath()
        self.virtual_lab = VirtualLaboratory()

        self.current_user: Optional[UserProgress] = None

    def initialize_user(self, user_id: str) -> UserProgress:
        """Initialize or load user progress"""
        user_file = self.user_data_dir / f"{user_id}.json"

        if user_file.exists():
            with open(user_file, "r", encoding="utf-8") as f:
                data = json.load(f)
            user_progress = UserProgress.from_dict(data)
        else:
            user_progress = UserProgress(
                user_id=user_id,
                completed_objectives=[],
                competency_scores={},
                learning_path=[],
                session_history=[],
                preferred_learning_style="visual",
                current_level="beginner",
            )

        self.current_user = user_progress
        return user_progress

    def assess_user_competency(

        self, domain: str, responses: List[int]

    ) -> Dict[str, Any]:
        """Assess user competency and update progress"""
        if not self.current_user:
            return {"error": "No user initialized"}

        score = self.competency_assessor.assess_competency(domain, responses)
        feedback = self.competency_assessor.get_personalized_feedback(domain, responses)

        # Update user progress
        self.current_user.competency_scores[domain] = score

        # Determine user level based on overall competency
        avg_score = np.mean(list(self.current_user.competency_scores.values()))
        if avg_score >= 0.8:
            self.current_user.current_level = "advanced"
        elif avg_score >= 0.6:
            self.current_user.current_level = "intermediate"
        else:
            self.current_user.current_level = "beginner"

        self.save_user_progress()

        return {
            "score": score,
            "feedback": feedback,
            "level": self.current_user.current_level,
            "recommendations": self.get_learning_recommendations(),
        }

    def get_personalized_learning_path(

        self, target_competencies: List[str]

    ) -> List[Dict[str, Any]]:
        """Get personalized learning path for user"""
        if not self.current_user:
            return []

        path_ids = self.learning_path_generator.generate_learning_path(
            self.current_user, target_competencies
        )

        adapted_path = []
        for obj_id in path_ids:
            adapted_content = self.learning_path_generator.adapt_to_learning_style(
                obj_id, self.current_user.preferred_learning_style
            )
            adapted_path.append(adapted_content)

        return adapted_path

    def run_virtual_experiment(

        self, experiment_id: str, user_inputs: Dict[str, Any]

    ) -> Dict[str, Any]:
        """Run virtual laboratory experiment"""
        result = self.virtual_lab.run_experiment(experiment_id, user_inputs)

        # Track experiment in user history
        if self.current_user and result.get("success"):
            experiment_record = {
                "experiment_id": experiment_id,
                "timestamp": datetime.now().isoformat(),
                "inputs": user_inputs,
                "completed": True,
            }
            self.current_user.session_history.append(experiment_record)
            self.save_user_progress()

        return result

    def get_learning_recommendations(self) -> List[str]:
        """Get learning recommendations based on current progress"""
        recommendations = []

        if not self.current_user or not self.current_user.competency_scores:
            recommendations.append("Start with basic spectroscopy concepts")
            recommendations.append("Complete the introductory assessment")
        else:
            weak_areas = [
                domain
                for domain, score in (
                    self.current_user.competency_scores.items()
                    if self.current_user
                    else {}
                )
                if score < 0.6
            ]

            for area in weak_areas:
                recommendations.append(f"Review {area} concepts")

            if not weak_areas:
                recommendations.append(
                    "Explore advanced topics in your areas of interest"
                )
                recommendations.append("Try hands-on virtual experiments")

        return recommendations

    def save_user_progress(self):
        """Save user progress to file"""
        if self.current_user:
            user_file = self.user_data_dir / f"{self.current_user.user_id}.json"
            with open(user_file, "w", encoding="utf-8") as f:
                json.dump(self.current_user.to_dict(), f, indent=2)

    def get_learning_analytics(self) -> Dict[str, Any]:
        """Get learning analytics for the current user"""
        if not self.current_user:
            return {}

        total_time = sum(
            obj.estimated_time
            for obj_id in self.current_user.completed_objectives
            for obj in [self.learning_path_generator.learning_objectives.get(obj_id)]
            if obj
        )

        return {
            "completed_objectives": len(self.current_user.completed_objectives),
            "total_study_time": total_time,
            "competency_scores": self.current_user.competency_scores,
            "current_level": self.current_user.current_level,
            "learning_style": self.current_user.preferred_learning_style,
            "session_count": len(self.current_user.session_history),
        }