File size: 18,940 Bytes
21823a6
 
 
 
 
 
 
 
 
503f867
21823a6
 
 
503f867
 
 
 
 
 
9318b04
503f867
9318b04
 
 
 
 
503f867
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9318b04
 
503f867
 
9318b04
 
 
 
 
503f867
 
9318b04
503f867
21823a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9318b04
 
21823a6
 
 
503f867
21823a6
 
 
503f867
 
9318b04
 
 
503f867
 
 
 
 
 
9318b04
503f867
 
 
 
 
 
 
 
 
 
 
9318b04
 
 
503f867
9318b04
 
503f867
9318b04
 
 
503f867
 
 
9318b04
 
21823a6
9318b04
503f867
 
 
 
 
9318b04
503f867
 
9318b04
 
503f867
9318b04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
503f867
21823a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9318b04
 
 
 
 
 
 
 
 
 
 
21823a6
9318b04
 
 
21823a6
9318b04
 
 
 
 
 
 
 
 
21823a6
9318b04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21823a6
 
9318b04
 
21823a6
9318b04
21823a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
503f867
 
 
 
 
 
 
 
 
 
345529d
503f867
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21823a6
503f867
 
 
 
21823a6
 
 
 
 
 
503f867
21823a6
 
503f867
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
# In modules/analyzer.py

import streamlit as st
import pandas as pd
import numpy as np
import seaborn as sns
from sklearn.metrics import confusion_matrix
import matplotlib.pyplot as plt
from datetime import datetime
from contextlib import contextmanager  # Correctly imported for use with @contextmanager

from config import LABEL_MAP  # Assuming LABEL_MAP is correctly defined in config.py

# --- ADD THESE IMPORTS AT THE TOP OF THE FILE ---
from utils.results_manager import ResultsManager
from modules.ui_components import create_spectrum_plot
import hashlib


# --- NEW: Centralized plot styling helper ---
@contextmanager
def plot_style_context(figsize=(5, 4), constrained_layout=True, **kwargs):
    """
    A context manager to apply consistent Matplotlib styling and
    make plots theme-aware.
    """
    try:
        theme_opts = st.get_option("theme") or {}
    except RuntimeError:
        # Fallback to empty dict if theme config is not available
        theme_opts = {}
    text_color = theme_opts.get("textColor", "#000000")
    bg_color = theme_opts.get("backgroundColor", "#FFFFFF")

    with plt.rc_context(
        {
            "figure.facecolor": bg_color,
            "axes.facecolor": bg_color,
            "text.color": text_color,
            "axes.labelcolor": text_color,
            "xtick.color": text_color,
            "ytick.color": text_color,
            "grid.color": text_color,
            "axes.edgecolor": text_color,
            "axes.titlecolor": text_color,  # Ensure title color matches
            "figure.autolayout": True,  # Auto-adjusts subplot params for a tight layout
        }
    ):
        fig, ax = plt.subplots(
            figsize=figsize, constrained_layout=constrained_layout, **kwargs
        )
        yield fig, ax
        plt.close(fig)  # Always close figure to prevent memory leaks


# --- END NEW HELPER ---


class BatchAnalysis:
    def __init__(self, df: pd.DataFrame):
        """Initializes the analysis object with the results DataFrame."""
        self.df = df
        if self.df.empty:
            return

        self.total_files = len(self.df)
        self.has_ground_truth = (
            "Ground Truth" in self.df.columns
            and not self.df["Ground Truth"].isnull().all()
        )
        self._prepare_data()
        self.kpis = self._calculate_kpis()

    def _prepare_data(self):
        """Ensures data types are correct for analysis."""
        self.df["Confidence"] = pd.to_numeric(self.df["Confidence"], errors="coerce")
        if self.has_ground_truth:
            self.df["Ground Truth"] = pd.to_numeric(
                self.df["Ground Truth"], errors="coerce"
            )

    def _calculate_kpis(self) -> dict:
        """A private method to compute all the key performance indicators."""
        stable_count = self.df[
            self.df["Predicted Class"] == "Stable (Unweathered)"
        ].shape[0]
        accuracy = "N/A"
        if self.has_ground_truth:
            valid_gt = self.df.dropna(subset=["Ground Truth", "Prediction"])
            accuracy = (valid_gt["Prediction"] == valid_gt["Ground Truth"]).mean()

        return {
            "Total Files": self.total_files,
            "Avg. Confidence": self.df["Confidence"].mean(),
            "Stable/Weathered": f"{stable_count}/{self.total_files - stable_count}",
            "Accuracy": accuracy,
        }

    def render_kpis(self):
        """Renders the top-level KPI metrics."""
        kpi_cols = st.columns(4)
        kpi_cols[0].metric("Total Files", f"{self.kpis['Total Files']}")
        kpi_cols[1].metric("Avg. Confidence", f"{self.kpis['Avg. Confidence']:.3f}")
        kpi_cols[2].metric("Stable/Weathered", self.kpis["Stable/Weathered"])
        kpi_cols[3].metric(
            "Accuracy",
            (
                f"{self.kpis['Accuracy']:.3f}"
                if isinstance(self.kpis["Accuracy"], float)
                else "N/A"
            ),
        )

    def render_visual_diagnostics(self):
        """
        Renders diagnostic plots with corrected aesthetics and a robust,
        interactive drill-down filter using st.selectbox.
        """
        st.markdown("##### Visual Analysis")
        if not self.has_ground_truth:
            st.info("Visual analysis requires Ground Truth data for this batch.")
            return

        valid_gt_df = self.df.dropna(subset=["Ground Truth"])
        plot_col1, plot_col2 = st.columns(2)

        # --- Chart 1: Confusion Matrix (Aesthetically Corrected) ---
        with plot_col1:
            with st.container(border=True):
                st.markdown("**Confusion Matrix**")
                cm = confusion_matrix(
                    valid_gt_df["Ground Truth"],
                    valid_gt_df["Prediction"],
                    labels=list(LABEL_MAP.keys()),
                )
                with plot_style_context() as (fig, ax):
                    sns.heatmap(
                        cm,
                        annot=True,
                        fmt="g",
                        ax=ax,
                        cmap="Blues",
                        xticklabels=list(LABEL_MAP.values()),
                        yticklabels=list(LABEL_MAP.values()),
                    )
                    ax.set_ylabel("Actual Class", fontsize=12)
                    ax.set_xlabel("Predicted Class", fontsize=12)

                    # --- AESTHETIC FIX: Rotate X-labels vertically for a compact look ---
                    ax.set_xticklabels(ax.get_xticklabels(), rotation=90)
                    ax.set_yticklabels(ax.get_yticklabels(), rotation=0)
                    ax.set_title("Prediction vs. Actual (Counts)", fontsize=14)
                    st.pyplot(fig, use_container_width=True)

        # --- Chart 2: Confidence vs. Correctness Box Plot (Unchanged) ---
        with plot_col2:
            with st.container(border=True):
                st.markdown("**Confidence Analysis**")
                valid_gt_df["Result"] = np.where(
                    valid_gt_df["Prediction"] == valid_gt_df["Ground Truth"],
                    "βœ… Correct",
                    "❌ Incorrect",
                )
                with plot_style_context() as (fig, ax):
                    sns.boxplot(
                        x="Result",
                        y="Confidence",
                        data=valid_gt_df,
                        ax=ax,
                        palette={"βœ… Correct": "lightgreen", "❌ Incorrect": "salmon"},
                    )
                    ax.set_ylabel("Model Confidence", fontsize=12)
                    ax.set_xlabel("Prediction Outcome", fontsize=12)
                    ax.set_title("Confidence Distribution by Outcome", fontsize=14)
                    st.pyplot(fig, use_container_width=True)

        st.divider()

        # --- FUNCTIONALITY FIX: Replace Button Grid with st.selectbox ---
        st.markdown("###### Interactive Confusion Matrix Drill-Down")
        st.caption(
            "Select a cell from the dropdown to filter the data grid in the 'Results Explorer' tab."
        )

        # Create a list of options for the selectbox from the confusion matrix
        cm = confusion_matrix(
            valid_gt_df["Ground Truth"],
            valid_gt_df["Prediction"],
            labels=list(LABEL_MAP.keys()),
        )
        cm_labels = list(LABEL_MAP.values())
        options = ["-- Select a cell to filter --"]

        # This nested loop creates the human-readable options for the dropdown
        for i, actual_label in enumerate(cm_labels):
            for j, predicted_label in enumerate(cm_labels):
                cell_value = cm[i, j]
                # We only add cells with content to the dropdown to avoid clutter
                if cell_value > 0:
                    option_str = f"Actual: {actual_label} | Predicted: {predicted_label} ({cell_value} files)"
                    options.append(option_str)

        # The selectbox widget, which is more robust for state management
        selected_option = st.selectbox(
            "Drill-Down Filter",
            options=options,
            key="cm_selectbox",  # Give it a key to track its state
            index=0,  # Default to the placeholder
        )

        # Logic to activate or deactivate the filter based on selection
        if selected_option != "-- Select a cell to filter --":
            # Parse the selection to get the actual and predicted classes
            parts = selected_option.split("|")
            actual_str = parts[0].replace("Actual: ", "").strip()
            # FIX: Split on " (" to get the full label without the file count
            predicted_str = parts[1].replace("Predicted: ", "").split(" (")[0].strip()

            # Find the corresponding numeric indices with error handling
            actual_matching = [k for k, v in LABEL_MAP.items() if v == actual_str]
            predicted_matching = [k for k, v in LABEL_MAP.items() if v == predicted_str]

            if not actual_matching or not predicted_matching:
                return

            actual_idx = actual_matching[0]
            predicted_idx = predicted_matching[0]

            # Use a simplified callback-like update to session state
            st.session_state["cm_actual_filter"] = actual_idx
            st.session_state["cm_predicted_filter"] = predicted_idx
            st.session_state["cm_filter_label"] = (
                f"Actual: {actual_str}, Predicted: {predicted_str}"
            )
            st.session_state["cm_filter_active"] = True
        else:
            # If the user selects the placeholder, deactivate the filter
            if st.session_state.get("cm_filter_active", False):
                self._clear_cm_filter()

    def _set_cm_filter(
        self,
        actual_idx: int,
        predicted_idx: int,
        actual_label: str,
        predicted_label: str,
    ):
        """Callback to set the confusion matrix filter in session state."""
        st.session_state["cm_actual_filter"] = actual_idx
        st.session_state["cm_predicted_filter"] = predicted_idx
        st.session_state["cm_filter_label"] = (
            f"Actual: {actual_label}, Predicted: {predicted_label}"
        )
        st.session_state["cm_filter_active"] = True
        # Streamlit will rerun automatically

    def _clear_cm_filter(self):
        """Callback to clear the confusion matrix filter from session state."""
        if "cm_actual_filter" in st.session_state:
            del st.session_state["cm_actual_filter"]
        if "cm_predicted_filter" in st.session_state:
            del st.session_state["cm_predicted_filter"]
        if "cm_filter_label" in st.session_state:
            del st.session_state["cm_filter_label"]
        if "cm_filter_active" in st.session_state:
            del st.session_state["cm_filter_active"]

    def render_interactive_grid(self):
        """
        Renders the filterable, detailed data grid with robust handling for
        row selection to prevent KeyError.
        """
        st.markdown("##### Detailed Results Explorer")

        # Start with a full copy of the dataframe to apply filters to
        filtered_df = self.df.copy()

        # --- Filter Section (STREAMLINED LAYOUT) ---
        with st.container(border=True):
            st.markdown("**Filters**")
            filter_row1 = st.columns([1, 1])
            filter_row2 = st.columns(1)  # Slider takes full width

            # Filter 1: By Predicted Class
            selected_classes = filter_row1[0].multiselect(
                "Filter by Prediction:",
                options=self.df["Predicted Class"].unique(),
                default=self.df["Predicted Class"].unique(),
            )
            filtered_df = filtered_df[
                filtered_df["Predicted Class"].isin(selected_classes)
            ]

            # Filter 2: By Ground Truth Correctness (if available)
            if self.has_ground_truth:
                filtered_df["Correct"] = (
                    filtered_df["Prediction"] == filtered_df["Ground Truth"]
                )
                correctness_options = ["βœ… Correct", "❌ Incorrect"]
                filtered_df["Result_Display"] = np.where(
                    filtered_df["Correct"], "βœ… Correct", "❌ Incorrect"
                )

                selected_correctness = filter_row1[1].multiselect(
                    "Filter by Result:",
                    options=correctness_options,
                    default=correctness_options,
                )
                filter_correctness_bools = [
                    True if c == "βœ… Correct" else False for c in selected_correctness
                ]
                filtered_df = filtered_df[
                    filtered_df["Correct"].isin(filter_correctness_bools)
                ]

            # Filter 3: By Confidence Range (full width below others)
            min_conf, max_conf = filter_row2[0].slider(
                "Filter by Confidence Range:",
                min_value=0.0,
                max_value=1.0,
                value=(0.0, 1.0),
                step=0.01,
                format="%.2f",  # Format slider display for clarity
            )
            filtered_df = filtered_df[
                (filtered_df["Confidence"] >= min_conf)
                & (filtered_df["Confidence"] <= max_conf)
            ]
        # --- END FILTER SECTION ---

        # Apply Confusion Matrix Drill-Down Filter (if active)
        if st.session_state.get("cm_filter_active", False):
            actual_idx = st.session_state["cm_actual_filter"]
            predicted_idx = st.session_state["cm_predicted_filter"]
            filter_label = st.session_state["cm_filter_label"]

            st.info(f"Filtering results for: **{filter_label}**")
            filtered_df = filtered_df[
                (filtered_df["Ground Truth"] == actual_idx)
                & (filtered_df["Prediction"] == predicted_idx)
            ]

        # --- Display the Filtered Data Table ---
        if filtered_df.empty:
            st.warning("No files match the current filter criteria.")
            st.session_state.selected_spectrum_file = None
        else:
            display_df = filtered_df.drop(
                columns=["Correct", "Result_Display"], errors="ignore"
            )

            st.dataframe(
                display_df,
                use_container_width=True,
                hide_index=True,
                on_select="rerun",
                selection_mode="single-row",
                key="results_grid_selection",
            )

            # --- ROBUST SELECTION HANDLING (THE FIX) ---
            selection_state = st.session_state.get("results_grid_selection")

            # Check if selection_state is a dictionary AND if it contains the 'rows' key
            if (
                isinstance(selection_state, dict)
                and "rows" in selection_state
                and selection_state["rows"]
            ):
                selected_index = selection_state["rows"][0]

                if selected_index < len(filtered_df):
                    st.session_state.selected_spectrum_file = filtered_df.iloc[
                        selected_index
                    ]["Filename"]
                else:
                    # This can happen if the table is re-filtered and the old index is now out of bounds
                    st.session_state.selected_spectrum_file = None
            else:
                # If the selection is empty or in an unexpected format, clear the selection
                st.session_state.selected_spectrum_file = None
            # --- END ROBUST HANDLING ---

    # --- ADD THIS ENTIRE NEW METHOD ---
    def render_selected_spectrum(self):
        """
        Renders an expander with the spectrum plot for the currently selected file.
        This is called after the data grid.
        """
        selected_file = st.session_state.get("selected_spectrum_file")

        # Only render if a file has been selected in the current session
        if selected_file:
            with st.expander(f"View Spectrum for: **{selected_file}**", expanded=True):
                # Retrieve the full, detailed record for the selected file
                spectrum_data = ResultsManager.get_spectrum_data_for_file(selected_file)

                # Check if the detailed data was successfully retrieved and contains all necessary arrays
                if spectrum_data and all(
                    spectrum_data.get(k) is not None
                    for k in ["x_raw", "y_raw", "x_resampled", "y_resampled"]
                ):
                    # Generate a unique cache key for the plot to avoid re-generating it unnecessarily
                    cache_key = hashlib.md5(
                        (
                            f"{spectrum_data['x_raw'].tobytes()}"
                            f"{spectrum_data['y_raw'].tobytes()}"
                            f"{spectrum_data['x_resampled'].tobytes()}"
                            f"{spectrum_data['y_resampled'].tobytes()}"
                        ).encode()
                    ).hexdigest()

                    # Call the plotting function from ui_components
                    plot_image = create_spectrum_plot(
                        spectrum_data["x_raw"],
                        spectrum_data["y_raw"],
                        spectrum_data["x_resampled"],
                        spectrum_data["y_resampled"],
                        _cache_key=cache_key,
                    )
                    st.image(
                        plot_image,
                        caption=f"Raw vs. Resampled Spectrum for {selected_file}",
                        use_container_width=True,
                    )
                else:
                    st.warning(
                        f"Could not retrieve spectrum data for '{selected_file}'. The data might not have been stored during the initial run."
                    )

    # --- END NEW METHOD ---

    def render(self):
        """
        The main public method to render the entire dashboard using a more
        organized and streamlined tab-based layout.
        """
        if self.df.empty:
            st.info(
                "The results table is empty. Please run an analysis on the 'Upload and Run' page."
            )
            return

        # --- Tier 1: KPIs (Always visible at the top) ---
        self.render_kpis()
        st.divider()

        # --- Tier 2: Tabbed Interface for Deeper Analysis ---
        tab1, tab2 = st.tabs(["πŸ“Š Visual Diagnostics", "πŸ—‚οΈ Results Explorer"])

        with tab1:
            # The visual diagnostics (Confusion Matrix, etc.) go here.
            self.render_visual_diagnostics()

        with tab2:
            # The interactive grid AND the spectrum viewer it controls go here.
            self.render_interactive_grid()
            self.render_selected_spectrum()