Spaces:
Running
Running
File size: 6,021 Bytes
e484a46 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 |
import os, sys, json
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), "..")))
from datetime import datetime
import argparse, numpy as np, torch
from torch.utils.data import TensorDataset, DataLoader
from sklearn.model_selection import StratifiedKFold
from sklearn.metrics import confusion_matrix
# Add project-specific imports
from scripts.preprocess_dataset import preprocess_dataset
from models.figure2_cnn import Figure2CNN
from models.resnet_cnn import ResNet1D
# Argument parser for CLI usage
parser = argparse.ArgumentParser(
description="Run 10-fold CV on Raman data with optional preprocessing.")
parser.add_argument("--target-len", type=int, default=500)
parser.add_argument("--baseline", action="store_true")
parser.add_argument("--smooth", action="store_true")
parser.add_argument("--normalize", action="store_true")
parser.add_argument("--batch-size", type=int, default=16)
parser.add_argument("--epochs", type=int, default=10)
parser.add_argument("--learning-rate", type=float, default=1e-3)
parser.add_argument("--model", type=str, default="figure2",
choices=["figure2", "resnet"])
args = parser.parse_args()
# Constants
# Raman-only dataset (RDWP)
DATASET_PATH = 'datasets/rdwp'
DEVICE = torch.device("cuda" if torch.cuda.is_available() else 'cpu')
NUM_FOLDS = 10
# Ensure output dirs exist
os.makedirs("outputs", exist_ok=True)
os.makedirs("outputs/logs", exist_ok=True)
print("Preprocessing Configuration:")
print(f" Reseample to : {args.target_len}")
print(f" Baseline Correct: {'β
' if args.baseline else 'β'}")
print(f" Smoothing : {'β
' if args.smooth else 'β'}")
print(f" Normalization : {'β
' if args.normalize else 'β'}")
# Load + Preprocess data
print("π Loading and preprocessing data ...")
X, y = preprocess_dataset(
DATASET_PATH,
target_len=args.target_len,
baseline_correction=args.baseline,
apply_smoothing=args.smooth,
normalize=args.normalize
)
X, y = np.array(X, np.float32), np.array(y, np.int64)
print(f"β
Data Loaded: {X.shape[0]} samples, {X.shape[1]} features each.")
print(f"π Using model: {args.model}")
# CV
skf = StratifiedKFold(n_splits=NUM_FOLDS, shuffle=True, random_state=42)
fold_accuracies = []
all_conf_matrices = []
for fold, (train_idx, val_idx) in enumerate(skf.split(X, y), 1):
print(f"\nπ Fold {fold}/{NUM_FOLDS}")
X_train, X_val = X[train_idx], X[val_idx]
y_train, y_val = y[train_idx], y[val_idx]
train_loader = DataLoader(
TensorDataset(torch.tensor(X_train), torch.tensor(y_train)),
batch_size=args.batch_size, shuffle=True)
val_loader = DataLoader(
TensorDataset(torch.tensor(X_val), torch.tensor(y_val)),batch_size=args.batch_size)
# Model selection
model = (Figure2CNN if args.model == "figure2" else ResNet1D)(
input_length=args.target_len).to(DEVICE)
optimizer = torch.optim.Adam(model.parameters(), lr=args.learning_rate)
criterion = torch.nn.CrossEntropyLoss()
for epoch in range(args.epochs):
model.train()
RUNNING_LOSS = 0.0
for inputs, labels in train_loader:
inputs = inputs.unsqueeze(1).to(DEVICE)
labels = labels.to(DEVICE)
optimizer.zero_grad()
loss = criterion(model(inputs), labels)
loss.backward()
optimizer.step()
RUNNING_LOSS += loss.item()
# After fold loop (outside the epoch loop), print 1 line:
print(f"β
Fold {fold} done. Final loss: {RUNNING_LOSS:.4f}")
# Evaluation
model.eval()
all_true, all_pred = [], []
with torch.no_grad():
for inputs, labels in val_loader:
inputs = inputs.unsqueeze(1).to(DEVICE)
labels = labels.to(DEVICE)
outputs = model(inputs)
_, predicted = torch.max(outputs, 1)
all_true.extend(labels.cpu().numpy())
all_pred.extend(predicted.cpu().numpy())
acc = 100 * np.mean(np.array(all_true) == np.array(all_pred))
fold_accuracies.append(acc)
all_conf_matrices.append(confusion_matrix(all_true, all_pred))
print(f"β
Fold {fold} Accuracy: {acc:.2f}%")
# Save model checkpoint **after** final fold
model_path = f"outputs/{args.model}_model.pth"
torch.save(model.state_dict(), model_path)
# Summary
mean_acc, std_acc = np.mean(fold_accuracies), np.std(fold_accuracies)
print("\nπ Cross-Validation Results:")
for i, a in enumerate(fold_accuracies, 1):
print(f"Fold {i}: {a:.2f}%")
print(f"\nβ
Mean Accuracy: {mean_acc:.2f}% Β± {std_acc:.2f}%")
print(f"β
Model saved to {model_path}")
# Save diagnostics
def save_diagnostics_log(fold_acc, confs, args_param, output_path):
fold_metrics = [{"fold": i+1, "accuracy": acc,
"confusion_matrix": c.tolist()}
for i, (a, c) in enumerate(zip(fold_acc, confs))]
log = {
"timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
"preprocessing": {
"target_len": args_param.target_len,
"baseline": args_param.baseline,
"smooth": args_param.smooth,
"normalize": args_param.normalize,
},
"fold_metrics": fold_metrics,
"overall": {
"mean_accuracy": float(np.mean(fold_acc)),
"std_accuracy": float(np.std(fold_acc)),
"num_folds": len(fold_acc),
"batch_size": args_param.batch_size,
"epochs": args_param.epochs,
"learning_rate": args_param.learning_rate,
"device": str(DEVICE)
}
}
with open(output_path, "w", encoding="utf-8") as f:
json.dump(log, f, indent=2)
print(f"π§ Diagnostics written to {output_path}")
log_path = f"outputs/logs/raman_{args.model}_diagnostics.json"
save_diagnostics_log(fold_accuracies, all_conf_matrices, args, log_path) |