File size: 6,021 Bytes
e484a46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import os, sys, json
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), "..")))
from datetime import datetime
import argparse, numpy as np, torch
from torch.utils.data import TensorDataset, DataLoader
from sklearn.model_selection import StratifiedKFold
from sklearn.metrics import confusion_matrix

# Add project-specific imports
from scripts.preprocess_dataset import preprocess_dataset
from models.figure2_cnn import Figure2CNN
from models.resnet_cnn import ResNet1D

# Argument parser for CLI usage
parser = argparse.ArgumentParser(
    description="Run 10-fold CV on Raman data with optional preprocessing.")
parser.add_argument("--target-len", type=int, default=500)
parser.add_argument("--baseline", action="store_true")
parser.add_argument("--smooth", action="store_true")
parser.add_argument("--normalize", action="store_true")
parser.add_argument("--batch-size", type=int, default=16)
parser.add_argument("--epochs", type=int, default=10)
parser.add_argument("--learning-rate", type=float, default=1e-3)
parser.add_argument("--model", type=str, default="figure2",
                    choices=["figure2", "resnet"])
args = parser.parse_args()

# Constants
# Raman-only dataset (RDWP)
DATASET_PATH = 'datasets/rdwp'
DEVICE = torch.device("cuda" if torch.cuda.is_available() else 'cpu')
NUM_FOLDS = 10

# Ensure output dirs exist
os.makedirs("outputs", exist_ok=True)
os.makedirs("outputs/logs", exist_ok=True)

print("Preprocessing Configuration:")
print(f"    Reseample to    : {args.target_len}")
print(f"    Baseline Correct: {'βœ…' if args.baseline else '❌'}")
print(f"    Smoothing       : {'βœ…' if args.smooth else '❌'}")
print(f"    Normalization   : {'βœ…' if args.normalize else '❌'}")

# Load + Preprocess data
print("πŸ”„ Loading and preprocessing data ...")
X, y = preprocess_dataset(
    DATASET_PATH,
    target_len=args.target_len,
    baseline_correction=args.baseline,
    apply_smoothing=args.smooth,
    normalize=args.normalize
)
X, y = np.array(X, np.float32), np.array(y, np.int64)
print(f"βœ… Data Loaded: {X.shape[0]} samples, {X.shape[1]} features each.")
print(f"πŸ” Using model: {args.model}")

# CV
skf = StratifiedKFold(n_splits=NUM_FOLDS, shuffle=True, random_state=42)
fold_accuracies = []
all_conf_matrices = []

for fold, (train_idx, val_idx) in enumerate(skf.split(X, y), 1):
    print(f"\nπŸ” Fold {fold}/{NUM_FOLDS}")

    X_train, X_val = X[train_idx], X[val_idx]
    y_train, y_val = y[train_idx], y[val_idx]

    train_loader = DataLoader(
        TensorDataset(torch.tensor(X_train), torch.tensor(y_train)),
        batch_size=args.batch_size, shuffle=True)
    val_loader = DataLoader(
        TensorDataset(torch.tensor(X_val), torch.tensor(y_val)),batch_size=args.batch_size)

    # Model selection
    model = (Figure2CNN if args.model == "figure2" else ResNet1D)(
        input_length=args.target_len).to(DEVICE)
    
    optimizer = torch.optim.Adam(model.parameters(), lr=args.learning_rate)
    criterion = torch.nn.CrossEntropyLoss()

    for epoch in range(args.epochs):
        model.train()
        RUNNING_LOSS = 0.0
        for inputs, labels in train_loader:
            inputs = inputs.unsqueeze(1).to(DEVICE)
            labels = labels.to(DEVICE)

            optimizer.zero_grad()
            loss = criterion(model(inputs), labels)
            loss.backward()
            optimizer.step()
            RUNNING_LOSS += loss.item()

    # After fold loop (outside the epoch loop), print 1 line:
    print(f"βœ… Fold {fold} done. Final loss: {RUNNING_LOSS:.4f}")

    # Evaluation
    model.eval()
    all_true, all_pred = [], []
    with torch.no_grad():
        for inputs, labels in val_loader:
            inputs = inputs.unsqueeze(1).to(DEVICE)
            labels = labels.to(DEVICE)
            outputs = model(inputs)
            _, predicted = torch.max(outputs, 1)
            all_true.extend(labels.cpu().numpy())
            all_pred.extend(predicted.cpu().numpy())

    acc = 100 * np.mean(np.array(all_true) == np.array(all_pred))
    fold_accuracies.append(acc)
    all_conf_matrices.append(confusion_matrix(all_true, all_pred))
    print(f"βœ… Fold {fold} Accuracy: {acc:.2f}%")

# Save model checkpoint **after** final fold
model_path = f"outputs/{args.model}_model.pth"
torch.save(model.state_dict(), model_path)

# Summary
mean_acc, std_acc = np.mean(fold_accuracies), np.std(fold_accuracies)
print("\nπŸ“Š Cross-Validation Results:")
for i, a in enumerate(fold_accuracies, 1):
    print(f"Fold {i}: {a:.2f}%")
print(f"\nβœ… Mean Accuracy: {mean_acc:.2f}% Β± {std_acc:.2f}%")
print(f"βœ… Model saved to {model_path}")

# Save diagnostics


def save_diagnostics_log(fold_acc, confs, args_param, output_path):
    fold_metrics = [{"fold": i+1, "accuracy": acc,
                    "confusion_matrix": c.tolist()}
        for i, (a, c) in enumerate(zip(fold_acc, confs))]
    log = {
        "timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
        "preprocessing": {
            "target_len": args_param.target_len,
            "baseline": args_param.baseline,
            "smooth": args_param.smooth,
            "normalize": args_param.normalize,
        },
        "fold_metrics": fold_metrics,
        "overall": {
            "mean_accuracy": float(np.mean(fold_acc)),
            "std_accuracy": float(np.std(fold_acc)),
            "num_folds": len(fold_acc),
            "batch_size": args_param.batch_size,
            "epochs": args_param.epochs,
            "learning_rate": args_param.learning_rate,
            "device": str(DEVICE)
        }
    }
    with open(output_path, "w", encoding="utf-8") as f:
        json.dump(log, f, indent=2)
    print(f"🧠 Diagnostics written to {output_path}")

log_path = f"outputs/logs/raman_{args.model}_diagnostics.json"
save_diagnostics_log(fold_accuracies, all_conf_matrices, args, log_path)