devjas1
commited on
Commit
·
d38cc5e
1
Parent(s):
1878de6
(UPDATE): expand .gitattributes to include additional file types for LFS tracking
Browse files(UPDATE): enhance README with detailed project description and features; refactor embed_documents function for improved error handling and encoding support
- .gitattributes +37 -0
- README.md +9 -5
- src/__pycache__.py +0 -0
- src/__pycache__/config_loader.cpython-310.pyc +0 -0
- src/__pycache__/diff_analyzer.cpython-310.pyc +0 -0
- src/__pycache__/embedder.cpython-310.pyc +0 -0
- src/__pycache__/generator.cpython-310.pyc +0 -0
- src/__pycache__/retriever.cpython-310.pyc +0 -0
- src/embedder.py +57 -19
.gitattributes
CHANGED
@@ -1,2 +1,39 @@
|
|
1 |
*.gguf filter=lfs diff=lfs merge=lfs -text
|
2 |
C:/Users/xJB6x/Projects/CodeMind/models/embeddinggemma-300m/* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
*.gguf filter=lfs diff=lfs merge=lfs -text
|
2 |
C:/Users/xJB6x/Projects/CodeMind/models/embeddinggemma-300m/* filter=lfs diff=lfs merge=lfs -text
|
3 |
+
|
4 |
+
|
5 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
26 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
30 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
36 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
37 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
38 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
39 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
---
|
2 |
title: CodeMind
|
3 |
-
emoji:
|
4 |
colorFrom: purple
|
5 |
colorTo: indigo
|
6 |
sdk: static
|
@@ -9,14 +9,18 @@ license: apache-2.0
|
|
9 |
short_description: AI-powered development assistant CLI Tool
|
10 |
---
|
11 |
|
12 |
-
|
13 |
|
14 |
-
|
|
|
|
|
15 |
|
16 |
## Features
|
17 |
|
18 |
-
- **
|
19 |
-
- **
|
|
|
|
|
20 |
- **Local Processing**: All AI processing happens on your machine with no data sent to cloud services
|
21 |
- **Flexible Configuration**: Customize models and parameters to suit your specific needs
|
22 |
- **FAISS Integration**: Efficient vector similarity search for fast retrieval
|
|
|
1 |
---
|
2 |
title: CodeMind
|
3 |
+
emoji: 🔧
|
4 |
colorFrom: purple
|
5 |
colorTo: indigo
|
6 |
sdk: static
|
|
|
9 |
short_description: AI-powered development assistant CLI Tool
|
10 |
---
|
11 |
|
12 |
+
**CodeMind** is a AI-powered development assistant that runs entirely on your local machine for intelligent document analysis and commit message generation. It leverages modern machine learning models for: helping you understand your codebase through semantic search and generates meaningful commit messages using locally hosted language models, ensuring complete privacy and no cloud dependencies.
|
13 |
|
14 |
+
- **Efficient Knowledge Retrieval**: Makes searching and querying documentation more powerful by using semantic embeddings rather than keyword search.
|
15 |
+
- **Smarter Git Workflow**: Automates the creation of meaningful commit messages by analyzing git diffs and using an LLM to summarize changes.
|
16 |
+
- **AI-Powered Documentation**: Enables you to ask questions about your project, using your own docs/context rather than just generic answers.
|
17 |
|
18 |
## Features
|
19 |
|
20 |
+
- **Document Embedding** (using [EmbeddingGemma-300m](https://huggingface.co/google/embeddinggemma-300m))
|
21 |
+
- **Semantic Search** (using [FAISS](https://github.com/facebookresearch/faiss) for vector similarity search)
|
22 |
+
- **Commit Message Generation** (using [Phi-2](https://huggingface.co/microsoft/phi-2-gguf) for text generation): Automatically generate descriptive commit messages based on your changes
|
23 |
+
- **Retrieval-Augmented Generation (RAG)**: Answers questions using indexed document context
|
24 |
- **Local Processing**: All AI processing happens on your machine with no data sent to cloud services
|
25 |
- **Flexible Configuration**: Customize models and parameters to suit your specific needs
|
26 |
- **FAISS Integration**: Efficient vector similarity search for fast retrieval
|
src/__pycache__.py
ADDED
File without changes
|
src/__pycache__/config_loader.cpython-310.pyc
DELETED
Binary file (763 Bytes)
|
|
src/__pycache__/diff_analyzer.cpython-310.pyc
DELETED
Binary file (1.1 kB)
|
|
src/__pycache__/embedder.cpython-310.pyc
DELETED
Binary file (924 Bytes)
|
|
src/__pycache__/generator.cpython-310.pyc
DELETED
Binary file (1.28 kB)
|
|
src/__pycache__/retriever.cpython-310.pyc
DELETED
Binary file (647 Bytes)
|
|
src/embedder.py
CHANGED
@@ -2,26 +2,30 @@
|
|
2 |
This script handles document embedding using EmbeddingGemma.
|
3 |
This is the entry point for indexing documents.
|
4 |
"""
|
5 |
-
|
|
|
|
|
6 |
import os
|
7 |
import pickle
|
8 |
-
import
|
9 |
-
import numpy as np
|
10 |
-
from sentence_transformers import SentenceTransformer
|
11 |
|
12 |
|
13 |
-
def embed_documents(path: str, config: dict):
|
14 |
"""
|
15 |
Embed documents from a directory and save to FAISS index.
|
16 |
|
17 |
Args:
|
18 |
path (str): Path to the directory containing the documents to embed.
|
19 |
config (dict): Configuration dictionary.
|
|
|
|
|
|
|
20 |
"""
|
21 |
try:
|
22 |
model = SentenceTransformer(config["embedding"]["model_path"])
|
23 |
-
print(
|
24 |
-
|
|
|
25 |
print(f"Error initializing embedding model: {e}")
|
26 |
return []
|
27 |
|
@@ -34,38 +38,72 @@ def embed_documents(path: str, config: dict):
|
|
34 |
fpath = os.path.join(path, fname)
|
35 |
if os.path.isfile(fpath):
|
36 |
try:
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
except Exception as e:
|
45 |
-
print(f"Error
|
46 |
|
47 |
if not embeddings:
|
48 |
print("No documents were successfully embedded.")
|
49 |
return []
|
50 |
|
|
|
|
|
|
|
|
|
51 |
# Create FAISS index
|
52 |
dimension = embeddings[0].shape[0]
|
53 |
index = faiss.IndexFlatIP(dimension)
|
54 |
|
55 |
-
#
|
56 |
embeddings_matrix = np.array(embeddings).astype("float32")
|
57 |
-
faiss.normalize_L2(embeddings_matrix)
|
58 |
-
|
|
|
59 |
index.add(embeddings_matrix)
|
60 |
|
61 |
# Save FAISS index and metadata
|
62 |
os.makedirs("vector_cache", exist_ok=True)
|
63 |
faiss.write_index(index, "vector_cache/faiss_index.bin")
|
64 |
|
|
|
65 |
with open("vector_cache/metadata.pkl", "wb") as f:
|
66 |
pickle.dump({"texts": texts, "filenames": filenames}, f)
|
67 |
|
68 |
-
print(
|
|
|
69 |
print(f"Total embeddings created: {len(embeddings)}")
|
70 |
|
71 |
return list(zip(filenames, embeddings))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
This script handles document embedding using EmbeddingGemma.
|
3 |
This is the entry point for indexing documents.
|
4 |
"""
|
5 |
+
from sentence_transformers import SentenceTransformer
|
6 |
+
import numpy as np
|
7 |
+
import faiss
|
8 |
import os
|
9 |
import pickle
|
10 |
+
from typing import List, Tuple
|
|
|
|
|
11 |
|
12 |
|
13 |
+
def embed_documents(path: str, config: dict) -> List[Tuple[str, np.ndarray]]:
|
14 |
"""
|
15 |
Embed documents from a directory and save to FAISS index.
|
16 |
|
17 |
Args:
|
18 |
path (str): Path to the directory containing the documents to embed.
|
19 |
config (dict): Configuration dictionary.
|
20 |
+
|
21 |
+
Returns:
|
22 |
+
List of tuples containing (filename, embedding)
|
23 |
"""
|
24 |
try:
|
25 |
model = SentenceTransformer(config["embedding"]["model_path"])
|
26 |
+
print(
|
27 |
+
f"Initialized embedding model: {config['embedding']['model_path']}")
|
28 |
+
except Exception as e: # Changed to catch broader exception
|
29 |
print(f"Error initializing embedding model: {e}")
|
30 |
return []
|
31 |
|
|
|
38 |
fpath = os.path.join(path, fname)
|
39 |
if os.path.isfile(fpath):
|
40 |
try:
|
41 |
+
# Try different encodings to handle various file types
|
42 |
+
for encoding in ['utf-8', 'latin-1', 'cp1252']:
|
43 |
+
try:
|
44 |
+
with open(fpath, "r", encoding=encoding) as f:
|
45 |
+
text = f.read()
|
46 |
+
break
|
47 |
+
except UnicodeDecodeError:
|
48 |
+
continue
|
49 |
+
else:
|
50 |
+
print(
|
51 |
+
f"Could not decode file {fpath} with common encodings")
|
52 |
+
continue
|
53 |
+
|
54 |
+
if text.strip(): # Only process non-empty files
|
55 |
+
emb = model.encode(text)
|
56 |
+
# Ensure all embeddings have the same dimension
|
57 |
+
if embeddings and emb.shape[0] != embeddings[0].shape[0]:
|
58 |
+
print(f"Dimension mismatch in file {fname}, skipping")
|
59 |
+
continue
|
60 |
+
|
61 |
+
embeddings.append(emb)
|
62 |
+
texts.append(text)
|
63 |
+
filenames.append(fname)
|
64 |
+
|
65 |
except Exception as e:
|
66 |
+
print(f"Error processing file {fpath}: {e}")
|
67 |
|
68 |
if not embeddings:
|
69 |
print("No documents were successfully embedded.")
|
70 |
return []
|
71 |
|
72 |
+
print("Embedder script started", flush=True)
|
73 |
+
print(f"Documents in path: {os.listdir(path)}")
|
74 |
+
print(f"Successfully processed {len(embeddings)} documents")
|
75 |
+
|
76 |
# Create FAISS index
|
77 |
dimension = embeddings[0].shape[0]
|
78 |
index = faiss.IndexFlatIP(dimension)
|
79 |
|
80 |
+
# Convert to numpy array and normalize
|
81 |
embeddings_matrix = np.array(embeddings).astype("float32")
|
82 |
+
faiss.normalize_L2(embeddings_matrix) # Normalize for cosine similarity
|
83 |
+
|
84 |
+
# Add normalized embeddings to index
|
85 |
index.add(embeddings_matrix)
|
86 |
|
87 |
# Save FAISS index and metadata
|
88 |
os.makedirs("vector_cache", exist_ok=True)
|
89 |
faiss.write_index(index, "vector_cache/faiss_index.bin")
|
90 |
|
91 |
+
# Save metadata
|
92 |
with open("vector_cache/metadata.pkl", "wb") as f:
|
93 |
pickle.dump({"texts": texts, "filenames": filenames}, f)
|
94 |
|
95 |
+
print(
|
96 |
+
f"Saved FAISS index to vector_cache/ with {len(embeddings)} documents.")
|
97 |
print(f"Total embeddings created: {len(embeddings)}")
|
98 |
|
99 |
return list(zip(filenames, embeddings))
|
100 |
+
|
101 |
+
|
102 |
+
# Example usage
|
103 |
+
if __name__ == "__main__":
|
104 |
+
config = {
|
105 |
+
"embedding": {
|
106 |
+
"model_path": "sentence-transformers/all-MiniLM-L6-v2" # Example model
|
107 |
+
}
|
108 |
+
}
|
109 |
+
result = embed_documents("./docs", config)
|