File size: 2,868 Bytes
df835ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import gradio as gr
import spaces
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
import os
from threading import Thread
import uuid
import soundfile as sf
import numpy as np

# Model and Tokenizer Loading
MODEL_ID = "NexaAIDev/Qwen2-Audio-7B-GGUF"
model = AutoModelForCausalLM.from_pretrained(
    MODEL_ID,
    trust_remote_code=True,
    torch_dtype=torch.float16
).to("cuda").eval()
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True)

DESCRIPTION = "[Qwen2-Audio-7B Demo](https://huggingface.co/NexaAIDev/Qwen2-Audio-7B-GGUF)"

audio_extensions = (".wav", ".mp3", ".ogg", ".flac")

def process_audio(audio_path):
    """Process audio file and return the appropriate format for the model."""
    audio_data, sample_rate = sf.read(audio_path)
    if len(audio_data.shape) > 1:
        audio_data = audio_data.mean(axis=1)  # Convert stereo to mono if necessary
    return audio_data, sample_rate

@spaces.GPU
def qwen_inference(audio_input, text_input=None):
    if not isinstance(audio_input, str) or not audio_input.lower().endswith(audio_extensions):
        raise ValueError("Please upload a valid audio file (WAV, MP3, OGG, or FLAC)")

    # Process audio input
    audio_data, sample_rate = process_audio(audio_input)
    
    # Prepare the prompt
    if text_input:
        prompt = f"Below is an audio clip. {text_input}"
    else:
        prompt = "Please describe what you hear in this audio clip."

    # Tokenize input
    inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
    
    # Generate response
    streamer = tokenizer.get_streamer()
    generation_kwargs = dict(
        inputs=inputs,
        streamer=streamer,
        max_new_tokens=512,
        temperature=0.7,
        do_sample=True
    )

    thread = Thread(target=model.generate, kwargs=generation_kwargs)
    thread.start()

    buffer = ""
    for new_text in streamer:
        buffer += new_text
        yield buffer

css = """
  #output {
    height: 500px; 
    overflow: auto; 
    border: 1px solid #ccc; 
  }
"""

with gr.Blocks(css=css) as demo:
    gr.Markdown(DESCRIPTION)

    with gr.Tab(label="Audio Input"):
        with gr.Row():
            with gr.Column():
                input_audio = gr.Audio(
                    label="Upload Audio",
                    type="filepath"
                )
                text_input = gr.Textbox(
                    label="Question (optional)",
                    placeholder="Ask a question about the audio or leave empty for general description"
                )
                submit_btn = gr.Button(value="Submit")
            with gr.Column():
                output_text = gr.Textbox(label="Output Text")

        submit_btn.click(
            qwen_inference,
            [input_audio, text_input],
            [output_text]
        )

demo.launch(debug=True)