Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright (2025) Bytedance Ltd. and/or its affiliates | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import torch | |
| import torch.nn.functional as F | |
| import torch.nn as nn | |
| from .dpt import DPTHead | |
| from .motion_module.motion_module import TemporalModule | |
| from easydict import EasyDict | |
| class DPTHeadTemporal(DPTHead): | |
| def __init__(self, | |
| in_channels, | |
| features=256, | |
| use_bn=False, | |
| out_channels=[256, 512, 1024, 1024], | |
| use_clstoken=False, | |
| num_frames=32, | |
| pe='ape' | |
| ): | |
| super().__init__(in_channels, features, use_bn, out_channels, use_clstoken) | |
| assert num_frames > 0 | |
| motion_module_kwargs = EasyDict(num_attention_heads = 8, | |
| num_transformer_block = 1, | |
| num_attention_blocks = 2, | |
| temporal_max_len = num_frames, | |
| zero_initialize = True, | |
| pos_embedding_type = pe) | |
| self.motion_modules = nn.ModuleList([ | |
| TemporalModule(in_channels=out_channels[2], | |
| **motion_module_kwargs), | |
| TemporalModule(in_channels=out_channels[3], | |
| **motion_module_kwargs), | |
| TemporalModule(in_channels=features, | |
| **motion_module_kwargs), | |
| TemporalModule(in_channels=features, | |
| **motion_module_kwargs) | |
| ]) | |
| def forward(self, out_features, patch_h, patch_w, frame_length): | |
| out = [] | |
| for i, x in enumerate(out_features): | |
| if self.use_clstoken: | |
| x, cls_token = x[0], x[1] | |
| readout = cls_token.unsqueeze(1).expand_as(x) | |
| x = self.readout_projects[i](torch.cat((x, readout), -1)) | |
| else: | |
| x = x[0] | |
| x = x.permute(0, 2, 1).reshape((x.shape[0], x.shape[-1], patch_h, patch_w)).contiguous() | |
| B, T = x.shape[0] // frame_length, frame_length | |
| x = self.projects[i](x) | |
| x = self.resize_layers[i](x) | |
| out.append(x) | |
| layer_1, layer_2, layer_3, layer_4 = out | |
| B, T = layer_1.shape[0] // frame_length, frame_length | |
| layer_3 = self.motion_modules[0](layer_3.unflatten(0, (B, T)).permute(0, 2, 1, 3, 4), None, None).permute(0, 2, 1, 3, 4).flatten(0, 1) | |
| layer_4 = self.motion_modules[1](layer_4.unflatten(0, (B, T)).permute(0, 2, 1, 3, 4), None, None).permute(0, 2, 1, 3, 4).flatten(0, 1) | |
| layer_1_rn = self.scratch.layer1_rn(layer_1) | |
| layer_2_rn = self.scratch.layer2_rn(layer_2) | |
| layer_3_rn = self.scratch.layer3_rn(layer_3) | |
| layer_4_rn = self.scratch.layer4_rn(layer_4) | |
| path_4 = self.scratch.refinenet4(layer_4_rn, size=layer_3_rn.shape[2:]) | |
| path_4 = self.motion_modules[2](path_4.unflatten(0, (B, T)).permute(0, 2, 1, 3, 4), None, None).permute(0, 2, 1, 3, 4).flatten(0, 1) | |
| path_3 = self.scratch.refinenet3(path_4, layer_3_rn, size=layer_2_rn.shape[2:]) | |
| path_3 = self.motion_modules[3](path_3.unflatten(0, (B, T)).permute(0, 2, 1, 3, 4), None, None).permute(0, 2, 1, 3, 4).flatten(0, 1) | |
| path_2 = self.scratch.refinenet2(path_3, layer_2_rn, size=layer_1_rn.shape[2:]) | |
| path_1 = self.scratch.refinenet1(path_2, layer_1_rn) | |
| out = self.scratch.output_conv1(path_1) | |
| out = F.interpolate( | |
| out, (int(patch_h * 14), int(patch_w * 14)), mode="bilinear", align_corners=True | |
| ) | |
| out = self.scratch.output_conv2(out) | |
| return out |