import os import cv2 import tqdm import uuid import logging import torch import spaces import trackers import numpy as np import gradio as gr import imageio.v3 as iio import supervision as sv from pathlib import Path from functools import lru_cache from typing import List, Optional, Tuple from transformers import AutoModelForObjectDetection, AutoImageProcessor # Configuration constants CHECKPOINTS = [ "ustc-community/dfine-xlarge-obj2coco" ] DEFAULT_CHECKPOINT = CHECKPOINTS[0] DEFAULT_CONFIDENCE_THRESHOLD = 0.3 TORCH_DTYPE = torch.float32 # Video MAX_NUM_FRAMES = 250 BATCH_SIZE = 4 ALLOWED_VIDEO_EXTENSIONS = {".mp4", ".avi", ".mov"} VIDEO_OUTPUT_DIR = Path("static/videos") VIDEO_OUTPUT_DIR.mkdir(parents=True, exist_ok=True) class TrackingAlgorithm: BYTETRACK = "ByteTrack (2021)" DEEPSORT = "DeepSORT (2017)" SORT = "SORT (2016)" # Create a color palette for visualization # These hex color codes define different colors for tracking different objects color = sv.ColorPalette.from_hex([ "#ffff00", "#ff9b00", "#ff8080", "#ff66b2", "#ff66ff", "#b266ff", "#9999ff", "#3399ff", "#66ffff", "#33ff99", "#66ff66", "#99ff00" ]) logging.basicConfig( level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s" ) logger = logging.getLogger(__name__) @lru_cache(maxsize=3) def get_model_and_processor(checkpoint: str): model = AutoModelForObjectDetection.from_pretrained(checkpoint, torch_dtype=TORCH_DTYPE) image_processor = AutoImageProcessor.from_pretrained(checkpoint) return model, image_processor @spaces.GPU(duration=20) def detect_objects( images: List[np.ndarray] | np.ndarray, target_size: Optional[Tuple[int, int]] = None, batch_size: int = BATCH_SIZE ): checkpoint = "ustc-community/dfine-xlarge-obj2coco" confidence_threshold = 0.3 device = "cuda" if torch.cuda.is_available() else "cpu" model, image_processor = get_model_and_processor(checkpoint) model = model.to(device) classes = ["person","aeroplane","bicycle","car","motorbike","bus","train","truck","boat"] if classes is not None: wrong_classes = [cls for cls in classes if cls not in model.config.label2id] if wrong_classes: gr.Warning(f"Classes not found in model config") keep_ids = [model.config.label2id[cls] for cls in classes if cls in model.config.label2id] else: keep_ids = None if isinstance(images, np.ndarray) and images.ndim == 4: images = [x for x in images] batches = [images[i:i + batch_size] for i in range(0, len(images), batch_size)] results = [] for batch in tqdm.tqdm(batches, desc="Processing frames"): # preprocess images inputs = image_processor(images=batch, return_tensors="pt") inputs = inputs.to(device).to(TORCH_DTYPE) # forward pass with torch.no_grad(): outputs = model(**inputs) # postprocess outputs if target_size: target_sizes = [target_size] * len(batch) else: target_sizes = [(image.shape[0], image.shape[1]) for image in batch] batch_results = image_processor.post_process_object_detection( outputs, target_sizes=target_sizes, threshold=confidence_threshold ) results.extend(batch_results) # move results to cpu for i, result in enumerate(results): results[i] = {k: v.cpu() for k, v in result.items()} if keep_ids is not None: keep = torch.isin(results[i]["labels"], torch.tensor(keep_ids)) results[i] = {k: v[keep] for k, v in results[i].items()} return results, model.config.id2label def get_target_size(image_height, image_width, max_size: int): if image_height < max_size and image_width < max_size: new_height, new_width = image_height, image_width elif image_height > image_width: new_height = max_size new_width = int(image_width * max_size / image_height) else: new_width = max_size new_height = int(image_height * max_size / image_width) # make even (for video codec compatibility) new_height = new_height // 2 * 2 new_width = new_width // 2 * 2 return new_width, new_height def read_video_k_frames(video_path: str, k: int, read_every_i_frame: int = 1): cap = cv2.VideoCapture(video_path) frames = [] i = 0 progress_bar = tqdm.tqdm(total=k, desc="Reading frames") while cap.isOpened() and len(frames) < k: ret, frame = cap.read() if not ret: break if i % read_every_i_frame == 0: frames.append(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)) progress_bar.update(1) i += 1 cap.release() progress_bar.close() return frames def get_tracker(fps: float): tracker = TrackingAlgorithm.BYTETRACK if tracker == TrackingAlgorithm.SORT: return trackers.SORTTracker(frame_rate=fps) elif tracker == TrackingAlgorithm.DEEPSORT: feature_extractor = trackers.DeepSORTFeatureExtractor.from_timm("mobilenetv4_conv_small.e1200_r224_in1k", device="cpu") return trackers.DeepSORTTracker(feature_extractor, frame_rate=fps) elif tracker == TrackingAlgorithm.BYTETRACK: return sv.ByteTrack(frame_rate=int(fps)) else: raise ValueError(f"Invalid tracker: {tracker}") def update_tracker(tracker, detections, frame): tracker_name = tracker.__class__.__name__ if tracker_name == "SORTTracker": return tracker.update(detections) elif tracker_name == "DeepSORTTracker": return tracker.update(detections, frame) elif tracker_name == "ByteTrack": return tracker.update_with_detections(detections) else: raise ValueError(f"Invalid tracker: {tracker}") def process_video( video_path: str, tracker_algorithm: Optional[str] = None, progress: gr.Progress = gr.Progress(track_tqdm=True), ) -> str: if not video_path or not os.path.isfile(video_path): raise ValueError(f"Invalid video path: {video_path}") ext = os.path.splitext(video_path)[1].lower() if ext not in ALLOWED_VIDEO_EXTENSIONS: raise ValueError(f"Unsupported video format: {ext}, supported formats: {ALLOWED_VIDEO_EXTENSIONS}") video_info = sv.VideoInfo.from_video_path(video_path) read_each_i_frame = max(1, video_info.fps // 25) target_fps = video_info.fps / read_each_i_frame target_width, target_height = get_target_size(video_info.height, video_info.width, 1080) n_frames_to_read = min(MAX_NUM_FRAMES, video_info.total_frames // read_each_i_frame) frames = read_video_k_frames(video_path, n_frames_to_read, read_each_i_frame) frames = [cv2.resize(frame, (target_width, target_height), interpolation=cv2.INTER_CUBIC) for frame in frames] # Set the color lookup mode to assign colors by track ID # This mean objects with the same track ID will be annotated by the same color color_lookup = sv.ColorLookup.TRACK if tracker_algorithm else sv.ColorLookup.CLASS box_annotator = sv.BoxAnnotator(color, color_lookup=color_lookup, thickness=1) label_annotator = sv.LabelAnnotator(color, color_lookup=color_lookup, text_scale=0.5) trace_annotator = sv.TraceAnnotator(color, color_lookup=color_lookup, thickness=1, trace_length=100) results, id2label = detect_objects( images=np.array(frames), target_size=(target_height, target_width), ) annotated_frames = [] # detections if tracker_algorithm: tracker = get_tracker(tracker_algorithm, target_fps) for frame, result in progress.tqdm(zip(frames, results), desc="Tracking objects", total=len(frames)): detections = sv.Detections.from_transformers(result, id2label=id2label) detections = detections.with_nms(threshold=0.95, class_agnostic=True) detections = update_tracker(tracker, detections, frame) labels = [f"#{tracker_id} {id2label[class_id]}" for class_id, tracker_id in zip(detections.class_id, detections.tracker_id)] annotated_frame = box_annotator.annotate(scene=frame, detections=detections) annotated_frame = label_annotator.annotate(scene=annotated_frame, detections=detections, labels=labels) annotated_frame = trace_annotator.annotate(scene=annotated_frame, detections=detections) annotated_frames.append(annotated_frame) else: for frame, result in tqdm.tqdm(zip(frames, results), desc="Annotating frames", total=len(frames)): detections = sv.Detections.from_transformers(result, id2label=id2label) detections = detections.with_nms(threshold=0.95, class_agnostic=True) annotated_frame = box_annotator.annotate(scene=frame, detections=detections) annotated_frame = label_annotator.annotate(scene=annotated_frame, detections=detections) annotated_frames.append(annotated_frame) output_filename = os.path.join(VIDEO_OUTPUT_DIR, f"output_{uuid.uuid4()}.mp4") iio.imwrite(output_filename, annotated_frames, fps=target_fps, codec="h264") return output_filename def create_video_inputs() -> List[gr.components.Component]: return [ gr.Video( label="Upload Video", sources=["upload"], interactive=True, format="mp4", # Ensure MP4 format elem_classes="input-component", ) ] def create_button_row() -> List[gr.Button]: return [ gr.Button( f"Detect Objects", variant="primary", elem_classes="action-button" ), gr.Button(f"Clear", variant="secondary", elem_classes="action-button"), ] # Gradio interface with gr.Blocks(theme=gr.themes.Soft()) as demo: gr.Markdown( """ # Vehicle & People Detection Demo ## Input your video and see the detected! """, elem_classes="header-text", ) with gr.Tabs(): with gr.Tab("Video"): gr.Markdown( f"The input video will be processed in ~25 FPS (up to {MAX_NUM_FRAMES} frames in result)." ) with gr.Row(): with gr.Column(scale=1, min_width=300): with gr.Group(): video_input = create_video_inputs()[0] video_detect_button, video_clear_button = create_button_row() with gr.Column(scale=2): video_output = gr.Video( label="Detection Results", format="mp4", # Explicit MP4 format elem_classes="output-component", ) video_clear_button.click( fn=lambda: (None,None), outputs=[ video_input, video_output ] ) video_detect_button.click( fn=process_video, inputs=[video_input], outputs=[video_output], ) if __name__ == "__main__": demo.queue(max_size=20).launch()