Spaces:
Running
on
Zero
Running
on
Zero
Upload 4 files
Browse files
README.md
CHANGED
@@ -9,4 +9,4 @@ app_file: app.py
|
|
9 |
pinned: false
|
10 |
---
|
11 |
|
12 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
9 |
pinned: false
|
10 |
---
|
11 |
|
12 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import io
|
2 |
+
import numpy
|
3 |
+
import gradio
|
4 |
+
import spaces
|
5 |
+
import moviepy
|
6 |
+
import supervision
|
7 |
+
from PIL import Image
|
8 |
+
from ultralytics import YOLOE
|
9 |
+
|
10 |
+
|
11 |
+
@spaces.GPU
|
12 |
+
def inference(video_path):
|
13 |
+
model = YOLOE("./model.pt")
|
14 |
+
names = ["person", "vehicle"]
|
15 |
+
model.set_classes(names, model.get_text_pe(names))
|
16 |
+
clip = moviepy.VideoFileClip(video_path)
|
17 |
+
results = []
|
18 |
+
for i, frame in enumerate(clip.iter_frames(fps=1)):
|
19 |
+
image = Image.fromarray(numpy.uint8(frame))
|
20 |
+
result = model.predict(frame, imgsz=640, conf=0.25, iou=0.7)
|
21 |
+
detections = supervision.Detections.from_ultralytics(result[0])
|
22 |
+
resolution_wh = image.size
|
23 |
+
thickness = supervision.calculate_optimal_line_thickness(resolution_wh=resolution_wh)
|
24 |
+
text_scale = supervision.calculate_optimal_text_scale(resolution_wh=resolution_wh)
|
25 |
+
labels = [
|
26 |
+
f"{class_name} {confidence:.2f}"
|
27 |
+
for class_name, confidence
|
28 |
+
in zip(detections['class_name'], detections.confidence)
|
29 |
+
]
|
30 |
+
annotated_image = image.copy()
|
31 |
+
annotated_image = supervision.MaskAnnotator(color_lookup=supervision.ColorLookup.INDEX, opacity=0.4).annotate(
|
32 |
+
scene=annotated_image, detections=detections)
|
33 |
+
annotated_image = supervision.BoxAnnotator(color_lookup=supervision.ColorLookup.INDEX,
|
34 |
+
thickness=thickness).annotate(
|
35 |
+
scene=annotated_image, detections=detections)
|
36 |
+
annotated_image = supervision.LabelAnnotator(color_lookup=supervision.ColorLookup.INDEX, text_scale=text_scale,
|
37 |
+
smart_position=True).annotate(
|
38 |
+
scene=annotated_image, detections=detections, labels=labels)
|
39 |
+
results.append(annotated_image)
|
40 |
+
frames = [numpy.array(img) for img in results]
|
41 |
+
output_clip = moviepy.ImageSequenceClip(frames, fps=1)
|
42 |
+
buf = io.BytesIO()
|
43 |
+
output_clip.write_videofile(buf, codec="libx264", audio=False)
|
44 |
+
clip.close()
|
45 |
+
buf.seek(0)
|
46 |
+
return buf
|
47 |
+
|
48 |
+
|
49 |
+
def gradio_interface(video_file):
|
50 |
+
output_video = inference(video_file.name)
|
51 |
+
return output_video
|
52 |
+
|
53 |
+
|
54 |
+
if __name__ == "__main__":
|
55 |
+
gradio.Interface(
|
56 |
+
fn=gradio_interface,
|
57 |
+
inputs=gradio.Video(type="file"),
|
58 |
+
outputs=gradio.Video(),
|
59 |
+
title="Video Object Detection",
|
60 |
+
description="Upload a video to run object detection using YOLOE.",
|
61 |
+
).launch()
|
model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bf39e17c356f4b73977aa978bbdf6d19d0830e6bff46727d2d1f260414e41e0f
|
3 |
+
size 74264838
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
ultralytics
|
2 |
+
supervision
|
3 |
+
moviepy
|
4 |
+
spaces
|
5 |
+
numpy
|