Spaces:
				
			
			
	
			
			
					
		Running
		
			on 
			
			CPU Upgrade
	
	
	
			
			
	
	
	
	
		
		
					
		Running
		
			on 
			
			CPU Upgrade
	| import logging | |
| import pprint | |
| from huggingface_hub import snapshot_download | |
| logging.getLogger("openai").setLevel(logging.WARNING) | |
| from src.backend.run_eval_suite_lighteval import run_evaluation | |
| from src.backend.manage_requests import check_completed_evals, get_eval_requests, set_eval_request | |
| from src.backend.sort_queue import sort_models_by_priority | |
| from src.envs import QUEUE_REPO, EVAL_REQUESTS_PATH_BACKEND, RESULTS_REPO, EVAL_RESULTS_PATH_BACKEND, API, LIMIT, TOKEN, ACCELERATOR, VENDOR, REGION | |
| from src.about import TASKS_LIGHTEVAL | |
| logging.basicConfig(level=logging.ERROR) | |
| pp = pprint.PrettyPrinter(width=80) | |
| PENDING_STATUS = "PENDING" | |
| RUNNING_STATUS = "RUNNING" | |
| FINISHED_STATUS = "FINISHED" | |
| FAILED_STATUS = "FAILED" | |
| snapshot_download(repo_id=RESULTS_REPO, revision="main", local_dir=EVAL_RESULTS_PATH_BACKEND, repo_type="dataset", max_workers=60, token=TOKEN) | |
| snapshot_download(repo_id=QUEUE_REPO, revision="main", local_dir=EVAL_REQUESTS_PATH_BACKEND, repo_type="dataset", max_workers=60, token=TOKEN) | |
| def run_auto_eval(): | |
| current_pending_status = [PENDING_STATUS] | |
| # pull the eval dataset from the hub and parse any eval requests | |
| # check completed evals and set them to finished | |
| check_completed_evals( | |
| api=API, | |
| checked_status=RUNNING_STATUS, | |
| completed_status=FINISHED_STATUS, | |
| failed_status=FAILED_STATUS, | |
| hf_repo=QUEUE_REPO, | |
| local_dir=EVAL_REQUESTS_PATH_BACKEND, | |
| hf_repo_results=RESULTS_REPO, | |
| local_dir_results=EVAL_RESULTS_PATH_BACKEND | |
| ) | |
| # Get all eval request that are PENDING, if you want to run other evals, change this parameter | |
| eval_requests = get_eval_requests(job_status=current_pending_status, hf_repo=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH_BACKEND) | |
| # Sort the evals by priority (first submitted first run) | |
| eval_requests = sort_models_by_priority(api=API, models=eval_requests) | |
| print(f"Found {len(eval_requests)} {','.join(current_pending_status)} eval requests") | |
| if len(eval_requests) == 0: | |
| return | |
| eval_request = eval_requests[0] | |
| pp.pprint(eval_request) | |
| set_eval_request( | |
| api=API, | |
| eval_request=eval_request, | |
| set_to_status=RUNNING_STATUS, | |
| hf_repo=QUEUE_REPO, | |
| local_dir=EVAL_REQUESTS_PATH_BACKEND, | |
| ) | |
| # This needs to be done | |
| #instance_size, instance_type = get_instance_for_model(eval_request) | |
| # For GPU | |
| # instance_size, instance_type = "small", "g4dn.xlarge" | |
| # For CPU | |
| instance_size, instance_type = "medium", "c6i" | |
| run_evaluation( | |
| eval_request=eval_request, | |
| task_names=TASKS_LIGHTEVAL, | |
| local_dir=EVAL_RESULTS_PATH_BACKEND, | |
| batch_size=1, | |
| accelerator=ACCELERATOR, | |
| region=REGION, | |
| vendor=VENDOR, | |
| instance_size=instance_size, | |
| instance_type=instance_type, | |
| limit=LIMIT | |
| ) | |
| if __name__ == "__main__": | |
| run_auto_eval() |