from functools import lru_cache from typing import Optional, Tuple import numpy as np from PIL import Image from PIL.Image import Resampling from huggingface_hub import hf_hub_download from encode import rgb_encode from image import ImageTyping, load_image from onnxruntime_ import open_onnx_model __all__ = [ 'get_monochrome_score', 'is_monochrome', ] # _DEFAULT_MONOCHROME_CKPT = 'monochrome-resnet18-safe2-450.onnx' _MONOCHROME_CKPTS = [ 'mobilenetv3_large_100_safe2', 'mobilenetv3_large_100', 'caformer_s36', ] _DEFAULT_MONOCHROME_CKPT = _MONOCHROME_CKPTS[0] @lru_cache() def _monochrome_validate_model(model): return open_onnx_model(hf_hub_download( f'deepghs/monochrome_detect', f'{model}/model.onnx' )) def _2d_encode(image: Image.Image, size: Tuple[int, int] = (384, 384), normalize: Optional[Tuple[float, float]] = (0.5, 0.5)): if image.mode != 'RGB': image = image.convert('RGB') image = image.resize(size, Resampling.BILINEAR) data = rgb_encode(image, order_='CHW') if normalize is not None: mean_, std_ = normalize mean = np.asarray([mean_]).reshape((-1, 1, 1)) std = np.asarray([std_]).reshape((-1, 1, 1)) data = (data - mean) / std return data def get_monochrome_score(image: ImageTyping, model: str = _DEFAULT_MONOCHROME_CKPT): image = load_image(image, mode='RGB') input_data = _2d_encode(image).astype(np.float32) input_data = np.stack([input_data]) output_data, = _monochrome_validate_model(model).run(['output'], {'input': input_data}) return {name: v.item() for name, v in zip(['monochrome', 'normal'], output_data[0])} def is_monochrome(image: ImageTyping, threshold: float = 0.5, ckpt: str = _DEFAULT_MONOCHROME_CKPT) -> bool: return get_monochrome_score(image, ckpt) >= threshold