monochrome_detection / monochrome.py
narugo1992
dev(narugo): use new models
a0ff18d
from functools import lru_cache
from typing import Optional, Tuple
import numpy as np
from PIL import Image
from PIL.Image import Resampling
from huggingface_hub import hf_hub_download
from encode import rgb_encode
from image import ImageTyping, load_image
from onnxruntime_ import open_onnx_model
__all__ = [
'get_monochrome_score',
'is_monochrome',
]
# _DEFAULT_MONOCHROME_CKPT = 'monochrome-resnet18-safe2-450.onnx'
_MONOCHROME_CKPTS = [
'mobilenetv3_large_100_safe2',
'mobilenetv3_large_100',
'caformer_s36',
]
_DEFAULT_MONOCHROME_CKPT = _MONOCHROME_CKPTS[0]
@lru_cache()
def _monochrome_validate_model(model):
return open_onnx_model(hf_hub_download(
f'deepghs/monochrome_detect',
f'{model}/model.onnx'
))
def _2d_encode(image: Image.Image, size: Tuple[int, int] = (384, 384),
normalize: Optional[Tuple[float, float]] = (0.5, 0.5)):
if image.mode != 'RGB':
image = image.convert('RGB')
image = image.resize(size, Resampling.BILINEAR)
data = rgb_encode(image, order_='CHW')
if normalize is not None:
mean_, std_ = normalize
mean = np.asarray([mean_]).reshape((-1, 1, 1))
std = np.asarray([std_]).reshape((-1, 1, 1))
data = (data - mean) / std
return data
def get_monochrome_score(image: ImageTyping, model: str = _DEFAULT_MONOCHROME_CKPT):
image = load_image(image, mode='RGB')
input_data = _2d_encode(image).astype(np.float32)
input_data = np.stack([input_data])
output_data, = _monochrome_validate_model(model).run(['output'], {'input': input_data})
return {name: v.item() for name, v in zip(['monochrome', 'normal'], output_data[0])}
def is_monochrome(image: ImageTyping, threshold: float = 0.5, ckpt: str = _DEFAULT_MONOCHROME_CKPT) -> bool:
return get_monochrome_score(image, ckpt) >= threshold