Spaces:
Sleeping
Sleeping
Upload gradcam_clip_large-2.py
Browse files- gradcam_clip_large-2.py +345 -0
gradcam_clip_large-2.py
ADDED
|
@@ -0,0 +1,345 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
from torchvision import transforms
|
| 5 |
+
from torchvision.transforms.functional import to_pil_image
|
| 6 |
+
import matplotlib.pyplot as plt
|
| 7 |
+
from torch.utils.data import DataLoader, Dataset
|
| 8 |
+
from PIL import Image
|
| 9 |
+
import os
|
| 10 |
+
import numpy as np
|
| 11 |
+
import warnings
|
| 12 |
+
from transformers import AutoProcessor, CLIPModel
|
| 13 |
+
import cv2
|
| 14 |
+
import re
|
| 15 |
+
from huggingface_hub import hf_hub_download
|
| 16 |
+
import io
|
| 17 |
+
warnings.filterwarnings("ignore", category=UserWarning)
|
| 18 |
+
|
| 19 |
+
class ImageDataset(Dataset):
|
| 20 |
+
def __init__(self, image, transform=None, face_only=True, dataset_name=None):
|
| 21 |
+
# Modified to accept a single PIL image instead of a list of paths
|
| 22 |
+
self.image = image
|
| 23 |
+
self.transform = transform
|
| 24 |
+
self.face_only = face_only
|
| 25 |
+
self.dataset_name = dataset_name
|
| 26 |
+
# Load face detector
|
| 27 |
+
self.face_detector = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
|
| 28 |
+
|
| 29 |
+
def __len__(self):
|
| 30 |
+
return 1 # Only one image
|
| 31 |
+
|
| 32 |
+
def detect_face(self, image_np):
|
| 33 |
+
"""Detect face in image and return the face region"""
|
| 34 |
+
gray = cv2.cvtColor(image_np, cv2.COLOR_RGB2GRAY)
|
| 35 |
+
faces = self.face_detector.detectMultiScale(gray, 1.1, 5)
|
| 36 |
+
|
| 37 |
+
# If no face is detected, use the whole image
|
| 38 |
+
if len(faces) == 0:
|
| 39 |
+
print("No face detected, using whole image")
|
| 40 |
+
h, w = image_np.shape[:2]
|
| 41 |
+
return (0, 0, w, h), image_np
|
| 42 |
+
|
| 43 |
+
# Get the largest face
|
| 44 |
+
if len(faces) > 1:
|
| 45 |
+
# Choose the largest face by area
|
| 46 |
+
areas = [w*h for (x, y, w, h) in faces]
|
| 47 |
+
largest_idx = np.argmax(areas)
|
| 48 |
+
x, y, w, h = faces[largest_idx]
|
| 49 |
+
else:
|
| 50 |
+
x, y, w, h = faces[0]
|
| 51 |
+
|
| 52 |
+
# Add padding around the face (5% on each side - reduced padding)
|
| 53 |
+
padding_x = int(w * 0.05)
|
| 54 |
+
padding_y = int(h * 0.05)
|
| 55 |
+
|
| 56 |
+
# Ensure padding doesn't go outside image bounds
|
| 57 |
+
x1 = max(0, x - padding_x)
|
| 58 |
+
y1 = max(0, y - padding_y)
|
| 59 |
+
x2 = min(image_np.shape[1], x + w + padding_x)
|
| 60 |
+
y2 = min(image_np.shape[0], y + h + padding_y)
|
| 61 |
+
|
| 62 |
+
# Extract the face region
|
| 63 |
+
face_img = image_np[y1:y2, x1:x2]
|
| 64 |
+
|
| 65 |
+
return (x1, y1, x2-x1, y2-y1), face_img
|
| 66 |
+
|
| 67 |
+
def __getitem__(self, idx):
|
| 68 |
+
# Use the single image provided
|
| 69 |
+
image_np = np.array(self.image)
|
| 70 |
+
label = 0 # Default label; will be overridden by prediction in app.py
|
| 71 |
+
|
| 72 |
+
# Store original image for visualization
|
| 73 |
+
original_image = self.image.copy()
|
| 74 |
+
|
| 75 |
+
# Detect face if required
|
| 76 |
+
if self.face_only:
|
| 77 |
+
face_box, face_img_np = self.detect_face(image_np)
|
| 78 |
+
face_img = Image.fromarray(face_img_np)
|
| 79 |
+
|
| 80 |
+
# Apply transform to face image
|
| 81 |
+
if self.transform:
|
| 82 |
+
face_tensor = self.transform(face_img)
|
| 83 |
+
else:
|
| 84 |
+
face_tensor = transforms.ToTensor()(face_img)
|
| 85 |
+
|
| 86 |
+
return face_tensor, label, "uploaded_image", original_image, face_box, self.dataset_name
|
| 87 |
+
else:
|
| 88 |
+
# Process the whole image
|
| 89 |
+
if self.transform:
|
| 90 |
+
image_tensor = self.transform(self.image)
|
| 91 |
+
else:
|
| 92 |
+
image_tensor = transforms.ToTensor()(self.image)
|
| 93 |
+
|
| 94 |
+
return image_tensor, label, "uploaded_image", original_image, None, self.dataset_name
|
| 95 |
+
|
| 96 |
+
class GradCAM:
|
| 97 |
+
def __init__(self, model, target_layer):
|
| 98 |
+
self.model = model
|
| 99 |
+
self.target_layer = target_layer
|
| 100 |
+
self.gradients = None
|
| 101 |
+
self.activations = None
|
| 102 |
+
self._register_hooks()
|
| 103 |
+
|
| 104 |
+
def _register_hooks(self):
|
| 105 |
+
def forward_hook(module, input, output):
|
| 106 |
+
if isinstance(output, tuple):
|
| 107 |
+
self.activations = output[0]
|
| 108 |
+
else:
|
| 109 |
+
self.activations = output
|
| 110 |
+
|
| 111 |
+
def backward_hook(module, grad_in, grad_out):
|
| 112 |
+
if isinstance(grad_out, tuple):
|
| 113 |
+
self.gradients = grad_out[0]
|
| 114 |
+
else:
|
| 115 |
+
self.gradients = grad_out
|
| 116 |
+
|
| 117 |
+
layer = dict([*self.model.named_modules()])[self.target_layer]
|
| 118 |
+
layer.register_forward_hook(forward_hook)
|
| 119 |
+
layer.register_backward_hook(backward_hook)
|
| 120 |
+
|
| 121 |
+
def generate(self, input_tensor, class_idx):
|
| 122 |
+
self.model.zero_grad()
|
| 123 |
+
|
| 124 |
+
try:
|
| 125 |
+
# Use only the vision part of the model for gradient calculation
|
| 126 |
+
vision_outputs = self.model.vision_model(pixel_values=input_tensor)
|
| 127 |
+
|
| 128 |
+
# Get the pooler output
|
| 129 |
+
features = vision_outputs.pooler_output
|
| 130 |
+
|
| 131 |
+
# Create a dummy gradient for the feature based on the class idx
|
| 132 |
+
one_hot = torch.zeros_like(features)
|
| 133 |
+
one_hot[0, class_idx] = 1
|
| 134 |
+
|
| 135 |
+
# Manually backpropagate
|
| 136 |
+
features.backward(gradient=one_hot)
|
| 137 |
+
|
| 138 |
+
# Check for None values
|
| 139 |
+
if self.gradients is None or self.activations is None:
|
| 140 |
+
print("Warning: Gradients or activations are None. Using fallback CAM.")
|
| 141 |
+
return np.ones((14, 14), dtype=np.float32) * 0.5
|
| 142 |
+
|
| 143 |
+
# Process gradients and activations
|
| 144 |
+
if len(self.gradients.shape) == 4: # Expected shape for convolutional layers
|
| 145 |
+
gradients = self.gradients.cpu().detach().numpy()
|
| 146 |
+
activations = self.activations.cpu().detach().numpy()
|
| 147 |
+
|
| 148 |
+
weights = np.mean(gradients, axis=(2, 3))
|
| 149 |
+
cam = np.zeros(activations.shape[2:], dtype=np.float32)
|
| 150 |
+
|
| 151 |
+
for i, w in enumerate(weights[0]):
|
| 152 |
+
cam += w * activations[0, i, :, :]
|
| 153 |
+
else:
|
| 154 |
+
# Handle transformer model format
|
| 155 |
+
gradients = self.gradients.cpu().detach().numpy()
|
| 156 |
+
activations = self.activations.cpu().detach().numpy()
|
| 157 |
+
|
| 158 |
+
if len(activations.shape) == 3: # [batch, sequence_length, hidden_dim]
|
| 159 |
+
seq_len = activations.shape[1]
|
| 160 |
+
|
| 161 |
+
# CLIP ViT typically has 196 patch tokens (14×14) + 1 class token = 197
|
| 162 |
+
if seq_len == 197:
|
| 163 |
+
# Skip the class token (first token) and reshape the patch tokens into a square
|
| 164 |
+
patch_tokens = activations[0, 1:, :] # Remove the class token
|
| 165 |
+
# Take the mean across the hidden dimension
|
| 166 |
+
token_importance = np.mean(np.abs(patch_tokens), axis=1)
|
| 167 |
+
# Reshape to the expected grid size (14×14 for CLIP ViT-B/16)
|
| 168 |
+
cam = token_importance.reshape(14, 14)
|
| 169 |
+
else:
|
| 170 |
+
# Try to find factors close to a square
|
| 171 |
+
side_len = int(np.sqrt(seq_len))
|
| 172 |
+
# Use the mean across features as importance
|
| 173 |
+
token_importance = np.mean(np.abs(activations[0]), axis=1)
|
| 174 |
+
# Create as square-like shape as possible
|
| 175 |
+
cam = np.zeros((side_len, side_len))
|
| 176 |
+
# Fill the cam with available values
|
| 177 |
+
flat_cam = cam.flatten()
|
| 178 |
+
flat_cam[:min(len(token_importance), len(flat_cam))] = token_importance[:min(len(token_importance), len(flat_cam))]
|
| 179 |
+
cam = flat_cam.reshape(side_len, side_len)
|
| 180 |
+
else:
|
| 181 |
+
# Fallback
|
| 182 |
+
print("Using fallback CAM shape (14x14)")
|
| 183 |
+
cam = np.ones((14, 14), dtype=np.float32) * 0.5 # Default fallback
|
| 184 |
+
|
| 185 |
+
# Ensure we have valid values
|
| 186 |
+
if cam is None or cam.size == 0:
|
| 187 |
+
print("Warning: Generated CAM is empty. Using fallback.")
|
| 188 |
+
cam = np.ones((14, 14), dtype=np.float32) * 0.5
|
| 189 |
+
|
| 190 |
+
cam = np.maximum(cam, 0)
|
| 191 |
+
if np.max(cam) > 0:
|
| 192 |
+
cam = cam / np.max(cam)
|
| 193 |
+
|
| 194 |
+
return cam
|
| 195 |
+
|
| 196 |
+
except Exception as e:
|
| 197 |
+
print(f"Error in GradCAM.generate: {str(e)}")
|
| 198 |
+
return np.ones((14, 14), dtype=np.float32) * 0.5
|
| 199 |
+
|
| 200 |
+
def overlay_cam_on_image(image, cam, face_box=None, alpha=0.5):
|
| 201 |
+
if face_box is not None:
|
| 202 |
+
x, y, w, h = face_box
|
| 203 |
+
# Create a mask for the entire image (all zeros initially)
|
| 204 |
+
img_np = np.array(image)
|
| 205 |
+
full_h, full_w = img_np.shape[:2]
|
| 206 |
+
full_cam = np.zeros((full_h, full_w), dtype=np.float32)
|
| 207 |
+
|
| 208 |
+
# Resize CAM to match face region
|
| 209 |
+
face_cam = cv2.resize(cam, (w, h))
|
| 210 |
+
|
| 211 |
+
# Copy the face CAM into the full image CAM at the face position
|
| 212 |
+
full_cam[y:y+h, x:x+w] = face_cam
|
| 213 |
+
|
| 214 |
+
# Convert full CAM to image
|
| 215 |
+
cam_resized = Image.fromarray((full_cam * 255).astype(np.uint8))
|
| 216 |
+
cam_colormap = plt.cm.jet(np.array(cam_resized) / 255.0)[:, :, :3] # Apply colormap
|
| 217 |
+
cam_colormap = (cam_colormap * 255).astype(np.uint8)
|
| 218 |
+
else:
|
| 219 |
+
cam_resized = Image.fromarray((cam * 255).astype(np.uint8)).resize(image.size, Image.BILINEAR)
|
| 220 |
+
cam_colormap = plt.cm.jet(np.array(cam_resized) / 255.0)[:, :, :3] # Apply colormap
|
| 221 |
+
cam_colormap = (cam_colormap * 255).astype(np.uint8)
|
| 222 |
+
|
| 223 |
+
blended = Image.blend(image, Image.fromarray(cam_colormap), alpha=alpha)
|
| 224 |
+
return blended
|
| 225 |
+
|
| 226 |
+
def save_comparison(image, cam, overlay, face_box=None):
|
| 227 |
+
fig, axes = plt.subplots(1, 3, figsize=(15, 5))
|
| 228 |
+
|
| 229 |
+
# Original Image
|
| 230 |
+
axes[0].imshow(image)
|
| 231 |
+
axes[0].set_title("Original")
|
| 232 |
+
if face_box is not None:
|
| 233 |
+
x, y, w, h = face_box
|
| 234 |
+
rect = plt.Rectangle((x, y), w, h, edgecolor='lime', linewidth=2, fill=False)
|
| 235 |
+
axes[0].add_patch(rect)
|
| 236 |
+
axes[0].axis("off")
|
| 237 |
+
|
| 238 |
+
# CAM
|
| 239 |
+
if face_box is not None:
|
| 240 |
+
# Create a full image CAM that highlights only the face
|
| 241 |
+
img_np = np.array(image)
|
| 242 |
+
h, w = img_np.shape[:2]
|
| 243 |
+
full_cam = np.zeros((h, w))
|
| 244 |
+
|
| 245 |
+
x, y, fw, fh = face_box
|
| 246 |
+
# Resize CAM to face size
|
| 247 |
+
face_cam = cv2.resize(cam, (fw, fh))
|
| 248 |
+
# Place it in the right position
|
| 249 |
+
full_cam[y:y+fh, x:x+fw] = face_cam
|
| 250 |
+
axes[1].imshow(full_cam, cmap="jet")
|
| 251 |
+
else:
|
| 252 |
+
axes[1].imshow(cam, cmap="jet")
|
| 253 |
+
axes[1].set_title("CAM")
|
| 254 |
+
axes[1].axis("off")
|
| 255 |
+
|
| 256 |
+
# Overlay
|
| 257 |
+
axes[2].imshow(overlay)
|
| 258 |
+
axes[2].set_title("Overlay")
|
| 259 |
+
axes[2].axis("off")
|
| 260 |
+
|
| 261 |
+
plt.tight_layout()
|
| 262 |
+
|
| 263 |
+
# Convert plot to PIL Image for Streamlit display
|
| 264 |
+
buf = io.BytesIO()
|
| 265 |
+
plt.savefig(buf, format="png", bbox_inches="tight")
|
| 266 |
+
plt.close()
|
| 267 |
+
buf.seek(0)
|
| 268 |
+
return Image.open(buf)
|
| 269 |
+
|
| 270 |
+
def load_clip_model():
|
| 271 |
+
# Modified to load checkpoint from Hugging Face
|
| 272 |
+
model = CLIPModel.from_pretrained("openai/clip-vit-large-patch14")
|
| 273 |
+
processor = AutoProcessor.from_pretrained("openai/clip-vit-large-patch14")
|
| 274 |
+
|
| 275 |
+
checkpoint_path = hf_hub_download(repo_id="drg31/model", filename="model.pth")
|
| 276 |
+
checkpoint = torch.load(checkpoint_path, map_location='cpu')
|
| 277 |
+
|
| 278 |
+
model_dict = model.state_dict()
|
| 279 |
+
checkpoint = {k: v for k, v in checkpoint.items() if k in model_dict and model_dict[k].shape == v.shape}
|
| 280 |
+
|
| 281 |
+
model_dict.update(checkpoint)
|
| 282 |
+
model.load_state_dict(model_dict)
|
| 283 |
+
|
| 284 |
+
model.eval()
|
| 285 |
+
return model, processor
|
| 286 |
+
|
| 287 |
+
def get_target_layer_clip(model):
|
| 288 |
+
# For CLIP ViT large, use a layer that will have activations in the right format
|
| 289 |
+
return "vision_model.encoder.layers.23"
|
| 290 |
+
|
| 291 |
+
def process_images(dataloader, model, cam_extractor, device, pred_class):
|
| 292 |
+
# Modified to process a single image and return results for Streamlit
|
| 293 |
+
for batch in dataloader:
|
| 294 |
+
input_tensor, label, img_paths, original_images, face_boxes, dataset_names = batch
|
| 295 |
+
original_image = original_images[0]
|
| 296 |
+
face_box = face_boxes[0]
|
| 297 |
+
|
| 298 |
+
print(f"Processing uploaded image...")
|
| 299 |
+
|
| 300 |
+
# Move tensors and model to device
|
| 301 |
+
input_tensor = input_tensor.to(device)
|
| 302 |
+
model = model.to(device)
|
| 303 |
+
|
| 304 |
+
try:
|
| 305 |
+
# Forward pass and Grad-CAM generation
|
| 306 |
+
output = model.vision_model(pixel_values=input_tensor).pooler_output
|
| 307 |
+
class_idx = pred_class # Use predicted class from app.py
|
| 308 |
+
cam = cam_extractor.generate(input_tensor, class_idx)
|
| 309 |
+
|
| 310 |
+
# Generate CAM image
|
| 311 |
+
if face_box is not None:
|
| 312 |
+
x, y, w, h = face_box
|
| 313 |
+
img_np = np.array(original_image)
|
| 314 |
+
h_full, w_full = img_np.shape[:2]
|
| 315 |
+
full_cam = np.zeros((h_full, w_full))
|
| 316 |
+
face_cam = cv2.resize(cam, (w, h))
|
| 317 |
+
full_cam[y:y+h, x:x+w] = face_cam
|
| 318 |
+
cam_img = Image.fromarray((plt.cm.jet(full_cam)[:, :, :3] * 255).astype(np.uint8))
|
| 319 |
+
else:
|
| 320 |
+
cam_resized = Image.fromarray((cam * 255).astype(np.uint8)).resize(original_image.size, Image.BILINEAR)
|
| 321 |
+
cam_colormap = plt.cm.jet(np.array(cam_resized) / 255.0)[:, :, :3]
|
| 322 |
+
cam_colormap = (cam_colormap * 255).astype(np.uint8)
|
| 323 |
+
cam_img = Image.fromarray(cam_colormap)
|
| 324 |
+
|
| 325 |
+
# Generate Overlay
|
| 326 |
+
overlay = overlay_cam_on_image(original_image, cam, face_box)
|
| 327 |
+
|
| 328 |
+
# Generate Comparison
|
| 329 |
+
comparison = save_comparison(original_image, cam, overlay, face_box)
|
| 330 |
+
|
| 331 |
+
return cam, cam_img, overlay, comparison
|
| 332 |
+
|
| 333 |
+
except Exception as e:
|
| 334 |
+
print(f"Error processing image: {str(e)}")
|
| 335 |
+
import traceback
|
| 336 |
+
traceback.print_exc()
|
| 337 |
+
# Return default values in case of error
|
| 338 |
+
default_cam = np.ones((14, 14), dtype=np.float32) * 0.5
|
| 339 |
+
cam_resized = Image.fromarray((default_cam * 255).astype(np.uint8)).resize(original_image.size, Image.BILINEAR)
|
| 340 |
+
cam_colormap = plt.cm.jet(np.array(cam_resized) / 255.0)[:, :, :3]
|
| 341 |
+
cam_colormap = (cam_colormap * 255).astype(np.uint8)
|
| 342 |
+
cam_img = Image.fromarray(cam_colormap)
|
| 343 |
+
overlay = overlay_cam_on_image(original_image, default_cam, face_box)
|
| 344 |
+
comparison = save_comparison(original_image, default_cam, overlay, face_box)
|
| 345 |
+
return default_cam, cam_img, overlay, comparison
|