import gradio as gr from ultralytics import YOLO from PIL import Image import timm from cods.classif.data import ClassificationDataset from cods.classif.models import ClassificationModel from cods.classif.cp import ClassificationConformalizer def classif(img): model_name = "resnet34" pretrained_resnet_34 = timm.create_model(model_name, pretrained=True) classifier = ClassificationModel(model=pretrained_resnet_34, model_name=model_name) val_dataset = ClassificationDataset(...) # path to imagenet validation set val_preds = classifier.build_predictions( val_dataset, dataset_name="imagenet", split_name="cal", batch_size=512, shuffle=False, ) cc = ClassificationConformalizer(method="lac", preprocess="softmax") cc.lbd = 0.9 conf_cls = cc.conformalize(val_preds) return str(conf_cls) # Load a pretrained YOLOv8n model model = YOLO("yolov8n.pt") def main_function(lbd, img): results = model(img) # predict on an image r = results[0] im_bgr = r.plot() # BGR-order numpy array im_rgb = Image.fromarray(im_bgr[..., ::-1]) # RGB-order PIL image new_img = im_rgb # res = results[0].save(filename="output.jpg") # save the image # # load image # new_img = Image.open("output.jpg") return new_img iface = gr.Interface( fn=classif, # main_function, inputs=gr.Image(type="pil"), # ["slider", gr.Image(type="pil")], outputs=gr.Textbox(), # Image(type="pil"), examples=[ "bus.jpg", # [0, "bus.jpg"], ], ) iface.launch()