leoandeol commited on
Commit
3a733d3
·
1 Parent(s): c7dd062

Trying cods classif

Browse files
Files changed (3) hide show
  1. app copy.py +29 -0
  2. app.py +29 -4
  3. requirements.txt +3 -2
app copy.py ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from ultralytics import YOLO
3
+ from PIL import Image
4
+
5
+ # Load a pretrained YOLOv8n model
6
+ model = YOLO("yolov8n.pt")
7
+
8
+
9
+ def main_function(lbd, img):
10
+ results = model(img) # predict on an image
11
+ r = results[0]
12
+ im_bgr = r.plot() # BGR-order numpy array
13
+ im_rgb = Image.fromarray(im_bgr[..., ::-1]) # RGB-order PIL image
14
+ new_img = im_rgb
15
+ # res = results[0].save(filename="output.jpg") # save the image
16
+ # # load image
17
+ # new_img = Image.open("output.jpg")
18
+ return new_img
19
+
20
+
21
+ iface = gr.Interface(
22
+ fn=main_function,
23
+ inputs=["slider", gr.Image(type="pil")],
24
+ outputs=gr.Image(type="pil"),
25
+ examples=[
26
+ [0, "bus.jpg"],
27
+ ],
28
+ )
29
+ iface.launch()
app.py CHANGED
@@ -1,6 +1,31 @@
1
  import gradio as gr
2
  from ultralytics import YOLO
3
  from PIL import Image
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
 
5
  # Load a pretrained YOLOv8n model
6
  model = YOLO("yolov8n.pt")
@@ -19,11 +44,11 @@ def main_function(lbd, img):
19
 
20
 
21
  iface = gr.Interface(
22
- fn=main_function,
23
- inputs=["slider", gr.Image(type="pil")],
24
- outputs=gr.Image(type="pil"),
25
  examples=[
26
- [0, "bus.jpg"],
27
  ],
28
  )
29
  iface.launch()
 
1
  import gradio as gr
2
  from ultralytics import YOLO
3
  from PIL import Image
4
+ from cods.classif.data import ClassificationDataset
5
+ from cods.classif.models import ClassificationModel
6
+ from cods.classif.cp import ClassificationConformalizer
7
+
8
+
9
+ def classif(img):
10
+ model_name = "resnet34"
11
+ pretrained_resnet_34 = timm.create_model(model_name, pretrained=True)
12
+ classifier = ClassificationModel(model=pretrained_resnet_34, model_name=model_name)
13
+
14
+ val_dataset = ClassificationDataset(...) # path to imagenet validation set
15
+
16
+ val_preds = classifier.build_predictions(
17
+ val_dataset,
18
+ dataset_name="imagenet",
19
+ split_name="cal",
20
+ batch_size=512,
21
+ shuffle=False,
22
+ )
23
+
24
+ cc = ClassificationConformalizer(method="lac", preprocess="softmax")
25
+ cc.lbd = 0.9
26
+ conf_cls = cc.conformalize(val_preds)
27
+ return str(conf_cls)
28
+
29
 
30
  # Load a pretrained YOLOv8n model
31
  model = YOLO("yolov8n.pt")
 
44
 
45
 
46
  iface = gr.Interface(
47
+ fn=classif, # main_function,
48
+ inputs=gr.Image(type="pil"), # ["slider", gr.Image(type="pil")],
49
+ outputs=gr.Textbox(), # Image(type="pil"),
50
  examples=[
51
+ "bus.jpg", # [0, "bus.jpg"],
52
  ],
53
  )
54
  iface.launch()
requirements.txt CHANGED
@@ -4,6 +4,7 @@ gradio
4
  opencv-python
5
  Pillow
6
  matplotlib
 
 
7
 
8
-
9
- ultralytics
 
4
  opencv-python
5
  Pillow
6
  matplotlib
7
+ timm
8
+ cods @ git+https://github.com/leoandeol/cods@main
9
 
10
+ #ultralytics