Spaces:
Runtime error
Runtime error
import gradio as gr | |
from ultralytics import YOLO | |
from PIL import Image | |
import timm | |
from cods.classif.data import ClassificationDataset | |
from cods.classif.models import ClassificationModel | |
from cods.classif.cp import ClassificationConformalizer | |
def classif(img): | |
model_name = "resnet34" | |
pretrained_resnet_34 = timm.create_model(model_name, pretrained=True) | |
classifier = ClassificationModel(model=pretrained_resnet_34, model_name=model_name) | |
val_dataset = ClassificationDataset(...) # path to imagenet validation set | |
val_preds = classifier.build_predictions( | |
val_dataset, | |
dataset_name="imagenet", | |
split_name="cal", | |
batch_size=512, | |
shuffle=False, | |
) | |
cc = ClassificationConformalizer(method="lac", preprocess="softmax") | |
cc.lbd = 0.9 | |
conf_cls = cc.conformalize(val_preds) | |
return str(conf_cls) | |
# Load a pretrained YOLOv8n model | |
model = YOLO("yolov8n.pt") | |
def main_function(lbd, img): | |
results = model(img) # predict on an image | |
r = results[0] | |
im_bgr = r.plot() # BGR-order numpy array | |
im_rgb = Image.fromarray(im_bgr[..., ::-1]) # RGB-order PIL image | |
new_img = im_rgb | |
# res = results[0].save(filename="output.jpg") # save the image | |
# # load image | |
# new_img = Image.open("output.jpg") | |
return new_img | |
iface = gr.Interface( | |
fn=classif, # main_function, | |
inputs=gr.Image(type="pil"), # ["slider", gr.Image(type="pil")], | |
outputs=gr.Textbox(), # Image(type="pil"), | |
examples=[ | |
"bus.jpg", # [0, "bus.jpg"], | |
], | |
) | |
iface.launch() | |