Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import gradio as gr | |
import json | |
import torch | |
import wavio | |
from tqdm import tqdm | |
from huggingface_hub import snapshot_download | |
from models import AudioDiffusion, DDPMScheduler | |
from audioldm.audio.stft import TacotronSTFT | |
from audioldm.variational_autoencoder import AutoencoderKL | |
from pydub import AudioSegment | |
from gradio import Markdown | |
import torch | |
#from diffusers.models.autoencoder_kl import AutoencoderKL | |
from diffusers import DiffusionPipeline,AudioPipelineOutput | |
from transformers import CLIPTextModel, T5EncoderModel, AutoModel, T5Tokenizer, T5TokenizerFast | |
from typing import Union | |
from diffusers.utils.torch_utils import randn_tensor | |
from tqdm import tqdm | |
from TangoFlux import TangoFluxInference | |
tangoflux = TangoFluxInference(path="declare-lab/TangoFlux") | |
def gradio_generate(prompt, output_format, steps, guidance,duration=10): | |
output_wave = tangoflux.generate(prompt,steps=steps,guidance=guidance,duration=duration) | |
output_wave = pipe(prompt,steps,guidance) ## Using pipeliine automatically uses flash attention for torch2.0 above | |
#output_wave = tango.generate(prompt, steps, guidance) | |
# output_filename = f"{prompt.replace(' ', '_')}_{steps}_{guidance}"[:250] + ".wav" | |
output_wave = output_wave.audios[0] | |
output_filename = "temp.wav" | |
wavio.write(output_filename, output_wave, rate=16000, sampwidth=2) | |
if (output_format == "mp3"): | |
AudioSegment.from_wav("temp.wav").export("temp.mp3", format = "mp3") | |
output_filename = "temp.mp3" | |
return output_filename | |
description_text = """ | |
<p><a href="https://huggingface.co/spaces/declare-lab/tango2/blob/main/app.py?duplicate=true"> <img style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a> For faster inference without waiting in queue, you may duplicate the space and upgrade to a GPU in the settings. <br/><br/> | |
Generate audio using Tango2 by providing a text prompt. Tango2 was built from Tango and was trained on <a href="https://huggingface.co/datasets/declare-lab/audio-alpaca">Audio-alpaca</a> | |
<br/><br/> This is the demo for Tango2 for text to audio generation: <a href="https://arxiv.org/abs/2404.09956">Read our paper.</a> | |
<p/> | |
""" | |
# Gradio input and output components | |
input_text = gr.Textbox(lines=2, label="Prompt") | |
output_format = gr.Radio(label = "Output format", info = "The file you can dowload", choices = ["mp3", "wav"], value = "wav") | |
output_audio = gr.Audio(label="Generated Audio", type="filepath") | |
denoising_steps = gr.Slider(minimum=10, maximum=100, value=25, step=1, label="Steps", interactive=True) | |
guidance_scale = gr.Slider(minimum=1, maximum=10, value=3, step=0.1, label="Guidance Scale", interactive=True) | |
duration_scale = gr.Slider(minimum=1, maximum=30, value=10, step=1, label="Duration", interactive=True) | |
# Gradio interface | |
gr_interface = gr.Interface( | |
fn=gradio_generate, | |
inputs=[input_text, output_format, denoising_steps, guidance_scale,duration_scale], | |
outputs=[output_audio], | |
title="TangoFlux: Aligning Diffusion-based Text-to-Audio Generations through Direct Preference Optimization", | |
description=description_text, | |
allow_flagging=False, | |
examples=[ | |
["Quiet speech and then and airplane flying away"], | |
["A bicycle peddling on dirt and gravel followed by a man speaking then laughing"], | |
["Ducks quack and water splashes with some animal screeching in the background"], | |
["Describe the sound of the ocean"], | |
["A woman and a baby are having a conversation"], | |
["A man speaks followed by a popping noise and laughter"], | |
["A cup is filled from a faucet"], | |
["An audience cheering and clapping"], | |
["Rolling thunder with lightning strikes"], | |
["A dog barking and a cat mewing and a racing car passes by"], | |
["Gentle water stream, birds chirping and sudden gun shot"], | |
["A man talking followed by a goat baaing then a metal gate sliding shut as ducks quack and wind blows into a microphone."], | |
["A dog barking"], | |
["A cat meowing"], | |
["Wooden table tapping sound while water pouring"], | |
["Applause from a crowd with distant clicking and a man speaking over a loudspeaker"], | |
["two gunshots followed by birds flying away while chirping"], | |
["Whistling with birds chirping"], | |
["A person snoring"], | |
["Motor vehicles are driving with loud engines and a person whistles"], | |
["People cheering in a stadium while thunder and lightning strikes"], | |
["A helicopter is in flight"], | |
["A dog barking and a man talking and a racing car passes by"], | |
], | |
cache_examples="lazy", # Turn on to cache. | |
) | |
# Launch Gradio app | |
gr_interface.queue(10).launch() |