Spaces:
Sleeping
Sleeping
File size: 8,616 Bytes
1dd7eb5 ec0c384 00b05e0 d0d6669 e76a04b d0d6669 e76a04b d163769 f53adeb d0d6669 d163769 81d0953 d163769 e76a04b 00b05e0 e76a04b a62b0d6 e76a04b 00b05e0 e76a04b 00b05e0 4948600 ec0c384 4948600 e76a04b ec0c384 f53adeb ec0c384 f53adeb d0d6669 f53adeb d0d6669 f53adeb d0d6669 f53adeb d0d6669 1dd7eb5 f53adeb d0d6669 1dd7eb5 d0d6669 f53adeb d0d6669 f53adeb d0d6669 f53adeb d0d6669 f53adeb d0d6669 f53adeb d0d6669 f53adeb a62b0d6 d0d6669 f53adeb d0d6669 f53adeb d0d6669 f53adeb d0d6669 a62b0d6 d0d6669 a62b0d6 e76a04b a62b0d6 d0d6669 62028bb d163769 62028bb bedfdc1 51aab6e bedfdc1 51aab6e bedfdc1 d163769 8558a87 d163769 8558a87 d163769 8558a87 d163769 8558a87 cc83f63 62028bb 8558a87 f53adeb 8558a87 d0d6669 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 |
import spaces
import gradio as gr
from huggingface_hub import list_models
from typing import List
import torch
from transformers import DonutProcessor, VisionEncoderDecoderModel
from PIL import Image
import json
import re
import logging
from datasets import load_dataset
import os
import numpy as np
from datetime import datetime
# Importar utils y save_img si no están ya importados
import utils
# Logging configuration
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Paths to the static image and GIF
README_IMAGE_PATH = os.path.join("figs", "saliencies-merit-dataset.png")
GIF_PATH = os.path.join("figs", "demo-samples.gif")
# Global variables for Donut model, processor, and dataset
dataset = None
def load_merit_dataset():
global dataset
if dataset is None:
dataset = load_dataset(
"de-Rodrigo/merit", name="en-digital-seq", split="test", num_proc=8
)
return dataset
def get_image_from_dataset(index):
global dataset
if dataset is None:
dataset = load_merit_dataset()
image_data = dataset[int(index)]["image"]
return image_data
def get_collection_models(tag: str) -> List[str]:
"""Get a list of models from a specific Hugging Face collection."""
models = list_models(author="de-Rodrigo")
return [model.modelId for model in models if tag in model.tags]
def initialize_donut():
try:
donut_model = VisionEncoderDecoderModel.from_pretrained(
"de-Rodrigo/donut-merit"
)
donut_processor = DonutProcessor.from_pretrained("de-Rodrigo/donut-merit")
donut_model = donut_model.to("cuda")
logger.info("Donut model loaded successfully on GPU")
return donut_model, donut_processor
except Exception as e:
logger.error(f"Error loading Donut model: {str(e)}")
raise
def compute_saliency(outputs, pixels, donut_p, image):
token_logits = torch.stack(outputs.scores, dim=1)
token_probs = torch.softmax(token_logits, dim=-1)
token_texts = []
saliency_images = []
for token_index in range(len(token_probs[0])):
target_token_prob = token_probs[
0, token_index, outputs.sequences[0, token_index]
]
if pixels.grad is not None:
pixels.grad.zero_()
target_token_prob.backward(retain_graph=True)
saliency = pixels.grad.data.abs().squeeze().mean(dim=0)
token_id = outputs.sequences[0][token_index].item()
token_text = donut_p.tokenizer.decode([token_id])
logger.info(f"Considered sequence token: {token_text}")
safe_token_text = re.sub(r'[<>:"/\\|?*]', "_", token_text)
current_datetime = datetime.now().strftime("%Y%m%d%H%M%S")
unique_safe_token_text = f"{safe_token_text}_{current_datetime}"
file_name = f"saliency_{unique_safe_token_text}.png"
saliency = utils.convert_tensor_to_rgba_image(saliency)
# Merge saliency image twice
saliency = utils.add_transparent_image(np.array(image), saliency)
saliency = utils.convert_rgb_to_rgba_image(saliency)
saliency = utils.add_transparent_image(np.array(image), saliency, 0.7)
saliency = utils.label_frame(saliency, token_text)
saliency_images.append(saliency)
token_texts.append(token_text)
return saliency_images, token_texts
@spaces.GPU(duration=300)
def process_image_donut(image):
try:
model, processor = initialize_donut()
if not isinstance(image, Image.Image):
image = Image.fromarray(image)
pixel_values = processor(image, return_tensors="pt").pixel_values.to("cuda")
pixel_values.requires_grad = True
task_prompt = "<s_cord-v2>"
decoder_input_ids = processor.tokenizer(
task_prompt, add_special_tokens=False, return_tensors="pt"
)["input_ids"].to("cuda")
outputs = model.generate.__wrapped__(
model,
pixel_values,
decoder_input_ids=decoder_input_ids,
max_length=model.decoder.config.max_position_embeddings,
early_stopping=True,
pad_token_id=processor.tokenizer.pad_token_id,
eos_token_id=processor.tokenizer.eos_token_id,
use_cache=True,
num_beams=1,
bad_words_ids=[[processor.tokenizer.unk_token_id]],
return_dict_in_generate=True,
output_scores=True,
)
saliency_images, token_texts = compute_saliency(outputs, pixel_values, processor, image)
sequence = processor.batch_decode(outputs.sequences)[0]
sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(
processor.tokenizer.pad_token, ""
)
sequence = re.sub(r"<.*?>", "", sequence, count=1).strip()
result = processor.token2json(sequence)
return saliency_images, json.dumps(result, indent=2)
except Exception as e:
logger.error(f"Error processing image with Donut: {str(e)}")
return None, f"Error: {str(e)}"
@spaces.GPU(duration=300)
def process_image(model_name, image=None, dataset_image_index=None):
if dataset_image_index is not None:
image = get_image_from_dataset(dataset_image_index)
if model_name == "de-Rodrigo/donut-merit":
saliency_images, result = process_image_donut(image)
else:
# Aquí deberías implementar el procesamiento para otros modelos
saliency_images, result = None, f"Processing for model {model_name} not implemented"
return saliency_images, result
def update_image(dataset_image_index):
return get_image_from_dataset(dataset_image_index)
if __name__ == "__main__":
# Load the dataset
load_merit_dataset()
models = get_collection_models("saliency")
models.append("de-Rodrigo/donut-merit")
with gr.Blocks() as demo:
gr.Markdown("# Saliency Maps with the MERIT Dataset 🎒📃🏆")
with gr.Row():
with gr.Column(scale=1):
gr.Image(value=README_IMAGE_PATH, height=400)
with gr.Column(scale=1):
gr.Image(
value=GIF_PATH, label="Dataset samples you can process", height=400
)
with gr.Tab("Introduction"):
gr.Markdown(
"""
## Welcome to Saliency Maps with the [MERIT Dataset](https://huggingface.co/datasets/de-Rodrigo/merit) 🎒📃🏆
This space demonstrates the capabilities of different Vision Language models
for document understanding tasks.
### Key Features:
- Process images from the [MERIT Dataset](https://huggingface.co/datasets/de-Rodrigo/merit) or upload your own image.
- Use a fine-tuned version of the models availabe to extract grades from documents.
- Visualize saliency maps to understand where the model is looking (WIP 🛠️).
"""
)
with gr.Tab("Try It Yourself"):
gr.Markdown(
"Select a model and an image from the dataset, or upload your own image."
)
with gr.Row():
with gr.Column():
model_dropdown = gr.Dropdown(choices=models, label="Select Model")
dataset_slider = gr.Slider(
minimum=0,
maximum=len(dataset) - 1,
step=1,
label="Dataset Image Index",
)
upload_image = gr.Image(
type="pil", label="Or Upload Your Own Image"
)
preview_image = gr.Image(label="Selected/Uploaded Image")
process_button = gr.Button("Process Image")
with gr.Row():
output_image = gr.Gallery(label="Processed Saliency Images")
output_text = gr.Textbox(label="Result")
# Update preview image when slider changes
dataset_slider.change(
fn=update_image, inputs=[dataset_slider], outputs=[preview_image]
)
# Update preview image when an image is uploaded
upload_image.change(
fn=lambda x: x, inputs=[upload_image], outputs=[preview_image]
)
# Process image when button is clicked
process_button.click(
fn=process_image,
inputs=[model_dropdown, upload_image, dataset_slider],
outputs=[output_image, output_text],
)
demo.launch()
|