mr_mistral / app.py
dcrey7's picture
version1
ddb108b
"""
French Conversation Tutor - Main Application
Practice French through natural conversation with Mr. Mistral!
"""
import gradio as gr
import numpy as np
import os
import io
import wave
import tempfile
import time
from datetime import datetime
from typing import List, Dict, Tuple
import re
import random
import shutil
from dotenv import load_dotenv
import soundfile as sf # Added missing import
# Load environment variables
load_dotenv()
# Model imports
from mistralai import Mistral
import google.generativeai as genai
from groq import Groq
import openai
# Load API keys
mistral_api_key = os.environ.get("MISTRAL_API_KEY")
gemini_api_key = os.environ.get("GEMINI_API_KEY")
groq_api_key = os.environ.get("GROQ_API_KEY")
openai_api_key = os.environ.get("OPENAI_API_KEY")
# Debug: Check if keys are loaded
print(f"Mistral API key loaded: {'Yes' if mistral_api_key else 'No'}")
print(f"Gemini API key loaded: {'Yes' if gemini_api_key else 'No'}")
print(f"Groq API key loaded: {'Yes' if groq_api_key else 'No'}")
print(f"OpenAI API key loaded: {'Yes' if openai_api_key else 'No'}")
# Initialize clients
mistral_client = None
if mistral_api_key:
mistral_client = Mistral(api_key=mistral_api_key)
current_llm = "Mistral AI"
elif gemini_api_key:
genai.configure(api_key=gemini_api_key)
current_llm = "Google Gemini (Fallback)"
else:
raise ValueError("Neither MISTRAL_API_KEY nor GEMINI_API_KEY found in environment variables.")
# Initialize Gemini for fallback even if Mistral is primary
if gemini_api_key and mistral_api_key:
genai.configure(api_key=gemini_api_key)
if not groq_api_key:
raise ValueError("GROQ_API_KEY not found in environment variables.")
groq_client = Groq(api_key=groq_api_key)
# Global list to track temp files (to prevent deletion before serving)
temp_audio_files = []
current_llm = "Unknown" # Track which LLM is being used
def cleanup_old_audio_files():
global temp_audio_files
# Keep more files and add delay to avoid deleting files being served
if len(temp_audio_files) > 20: # Increased from 10 to 20
old_files = temp_audio_files[:-20]
for file_path in old_files:
try:
# Check if file is older than 60 seconds before deleting
if os.path.exists(file_path):
file_age = datetime.now().timestamp() - os.path.getmtime(file_path)
if file_age > 60: # Only delete files older than 60 seconds
os.remove(file_path)
temp_audio_files.remove(file_path)
except:
pass
def get_system_prompt():
return """You are Mr. Mistral, a French tutor having a conversation with ONE student.
CRITICAL: You are ONLY the tutor. The student will speak to you, and you respond ONLY to what they actually said.
NEVER:
- Create dialogue for the student
- Imagine what the student might say
- Write "You:" or "Student:" or any dialogue
- Continue the conversation by yourself
ALWAYS:
- Wait for the student's actual input
- Respond with ONE French sentence only
- Use exactly 3 lines:
French sentence
(pronunciation)
[translation]
Example - if student says "Bonjour":
Bonjour! Comment allez-vous?
(bohn-ZHOOR! koh-mahn tah-lay VOO?)
[Hello! How are you?]
ONE sentence response only. NO additional dialogue."""
def validate_response_format(response: str) -> Tuple[bool, str]:
lines = response.strip().split('\n')
cleaned_lines = []
for line in lines:
line = line.strip()
if any(marker in line.lower() for marker in ['you:', 'user:', 'student:', 'me:', 'moi:']):
continue
if 'what do you' in line.lower() or "qu'est-ce que" in line.lower():
continue
if line:
cleaned_lines.append(line)
french_line = None
pronunciation_line = None
translation_line = None
for i, line in enumerate(cleaned_lines):
if '(' in line and ')' in line and not pronunciation_line:
pronunciation_line = line
if i > 0 and not french_line:
french_line = cleaned_lines[i-1]
elif '[' in line and ']' in line and not translation_line:
translation_line = line
if not french_line:
for line in cleaned_lines:
if line and not any(c in line for c in ['(', ')', '[', ']', '*']):
french_line = line
break
if french_line:
if not pronunciation_line:
pronunciation_line = "(pronunciation guide not available)"
if not translation_line:
translation_line = "[translation not available]"
return True, f"{french_line}\n{pronunciation_line}\n{translation_line}"
return False, response
def generate_scenario():
"""Generate initial scenario and hints"""
try:
# List of diverse topics
topics = [
{
"name": "Daily Routine",
"phrases": [
"Je me rΓ©veille Γ ... (zhuh muh ray-vay ah) [I wake up at...]",
"Je prends le petit dΓ©jeuner (zhuh prahn luh puh-tee day-zhuh-nay) [I have breakfast]",
"Je travaille de... Γ ... (zhuh trah-vay duh... ah) [I work from... to...]",
"Le soir, je... (luh swahr, zhuh) [In the evening, I...]"
],
"opening": "Γ€ quelle heure vous levez-vous le matin?\n(ah kel uhr voo luh-vay voo luh mah-tahn?)\n[What time do you get up in the morning?]"
},
{
"name": "Favorite Foods",
"phrases": [
"Mon plat prΓ©fΓ©rΓ© est... (mohn plah pray-fay-ray ay) [My favorite dish is...]",
"J'adore... (zhah-dohr) [I love...]",
"Je n'aime pas... (zhuh nehm pah) [I don't like...]",
"C'est dΓ©licieux! (say day-lee-see-uh) [It's delicious!]"
],
"opening": "Quel est votre plat prΓ©fΓ©rΓ©?\n(kel ay voh-truh plah pray-fay-ray?)\n[What is your favorite dish?]"
},
{
"name": "Work and Career",
"phrases": [
"Je travaille comme... (zhuh trah-vay kohm) [I work as...]",
"Mon bureau est... (mohn bew-roh ay) [My office is...]",
"J'aime mon travail (zhehm mohn trah-vay) [I like my job]",
"Mes collègues sont... (may koh-lehg sohn) [My colleagues are...]"
],
"opening": "Qu'est-ce que vous faites comme travail?\n(kess-kuh voo feht kohm trah-vay?)\n[What do you do for work?]"
},
{
"name": "Music and Hobbies",
"phrases": [
"J'Γ©coute... (zhay-koot) [I listen to...]",
"Mon chanteur prΓ©fΓ©rΓ© est... (mohn shahn-tuhr pray-fay-ray ay) [My favorite singer is...]",
"Je joue de... (zhuh zhoo duh) [I play (instrument)...]",
"Dans mon temps libre... (dahn mohn tahn lee-bruh) [In my free time...]"
],
"opening": "Quel type de musique aimez-vous?\n(kel teep duh mew-zeek ay-may voo?)\n[What type of music do you like?]"
},
{
"name": "Weekend Plans",
"phrases": [
"Ce weekend, je vais... (suh wee-kehnd, zhuh vay) [This weekend, I'm going to...]",
"J'aimerais... (zheh-muh-ray) [I would like to...]",
"Avec mes amis... (ah-vek may zah-mee) [With my friends...]",
"Γ‡a sera amusant! (sah suh-rah ah-mew-zahn) [It will be fun!]"
],
"opening": "Qu'est-ce que vous faites ce weekend?\n(kess-kuh voo feht suh wee-kehnd?)\n[What are you doing this weekend?]"
},
{
"name": "Family and Friends",
"phrases": [
"Ma famille habite... (mah fah-mee ah-beet) [My family lives...]",
"J'ai... frères/soeurs (zhay... frehr/suhr) [I have... brothers/sisters]",
"Mon meilleur ami... (mohn may-yuhr ah-mee) [My best friend...]",
"Nous aimons... ensemble (noo zeh-mohn... ahn-sahm-bluh) [We like to... together]"
],
"opening": "Parlez-moi de votre famille!\n(pahr-lay mwah duh voh-truh fah-mee!)\n[Tell me about your family!]"
},
{
"name": "Weather and Seasons",
"phrases": [
"Il fait beau/mauvais (eel feh boh/moh-veh) [The weather is nice/bad]",
"J'aime l'Γ©tΓ©/l'hiver (zhehm lay-tay/lee-vehr) [I like summer/winter]",
"Il pleut souvent (eel pluh soo-vahn) [It rains often]",
"Ma saison prΓ©fΓ©rΓ©e est... (mah seh-zohn pray-fay-ray ay) [My favorite season is...]"
],
"opening": "Quel temps fait-il aujourd'hui?\n(kel tahn feh-teel oh-zhoor-dwee?)\n[What's the weather like today?]"
},
{
"name": "Travel and Vacations",
"phrases": [
"J'ai visitΓ©... (zhay vee-zee-tay) [I visited...]",
"Je voudrais aller Γ ... (zhuh voo-dray ah-lay ah) [I would like to go to...]",
"En vacances, je... (ahn vah-kahns, zhuh) [On vacation, I...]",
"C'Γ©tait magnifique! (say-teh mahn-yee-feek) [It was magnificent!]"
],
"opening": "OΓΉ aimez-vous voyager?\n(oo ay-may voo vwah-yah-zhay?)\n[Where do you like to travel?]"
}
]
# Select a random topic
selected_topic = random.choice(topics)
# Format the scenario directly without using LLM
scenario = f"""**Topic: {selected_topic['name']}**
**Helpful phrases:**
- {selected_topic['phrases'][0]}
- {selected_topic['phrases'][1]}
- {selected_topic['phrases'][2]}
- {selected_topic['phrases'][3]}
{selected_topic['opening']}"""
return scenario
except Exception as e:
return f"Error generating scenario: {str(e)}"
def extract_french_for_tts(text: str) -> str:
"""Extract only the French text (first line without parentheses/brackets)"""
lines = text.strip().split('\n')
for line in lines:
line = line.strip()
if line and '(' not in line and '[' not in line and '*' not in line and not line.startswith('**'):
return line
return ""
def process_speech_to_text(audio_tuple) -> Tuple[str, bool]:
"""Convert audio to text using Groq Whisper"""
if audio_tuple is None:
return "No audio received", False
try:
sample_rate, audio_data = audio_tuple
wav_buffer = io.BytesIO()
sf.write(wav_buffer, audio_data, sample_rate, format='WAV')
wav_buffer.seek(0)
transcription = groq_client.audio.transcriptions.create(
file=("audio.wav", wav_buffer),
model="whisper-large-v3-turbo",
language="fr"
)
return transcription.text, True
except Exception as e:
error_msg = str(e)
if "401" in error_msg or "Invalid API Key" in error_msg:
return "Error: Invalid Groq API key. Please check your GROQ_API_KEY.", False
elif "quota" in error_msg.lower():
return "Error: Groq API quota exceeded. Please check your account.", False
else:
return f"Error in speech recognition: {error_msg}", False
def generate_tutor_response(conversation_history: List[Dict], user_text: str) -> str:
global current_llm
# Try Mistral first
if mistral_client:
try:
messages = [
{"role": "system", "content": get_system_prompt()}
]
for msg in conversation_history:
role = "user" if msg["role"] == "user" else "assistant"
messages.append({"role": role, "content": msg["content"]})
messages.append({"role": "user", "content": user_text})
response = mistral_client.chat.complete(
model="mistral-large-latest",
messages=messages
)
raw_response = response.choices[0].message.content
current_llm = "Mistral AI"
is_valid, cleaned_response = validate_response_format(raw_response)
if not is_valid:
french_text = extract_french_for_tts(raw_response)
if french_text:
cleaned_response = f"{french_text}\n(pronunciation not available)\n[translation not available]"
return cleaned_response
except Exception as e:
print(f"Mistral error: {str(e)}, falling back to Gemini")
if not gemini_api_key:
return f"Error: Mistral failed and no Gemini fallback available: {str(e)}"
# Fallback to Gemini
if gemini_api_key:
try:
genai.configure(api_key=gemini_api_key)
model = genai.GenerativeModel("models/gemini-1.5-flash-latest")
messages = [
{"role": "user", "parts": [get_system_prompt()]}
]
for msg in conversation_history:
messages.append({"role": msg["role"], "parts": [msg["content"]]})
messages.append({"role": "user", "parts": [user_text]})
response = model.generate_content(messages)
raw_response = response.text
current_llm = "Google Gemini (Fallback)"
is_valid, cleaned_response = validate_response_format(raw_response)
if not is_valid:
french_text = extract_french_for_tts(raw_response)
if french_text:
cleaned_response = f"{french_text}\n(pronunciation not available)\n[translation not available]"
return cleaned_response
except Exception as e:
return f"Error: Both Mistral and Gemini failed: {str(e)}"
return "Error: No LLM available"
def text_to_speech(text: str) -> str:
global temp_audio_files
try:
french_text = extract_french_for_tts(text)
if not french_text:
return None
# Use Groq TTS
tts_response = groq_client.audio.speech.create(
model="tts-1", # or "tts-1-hd" for higher quality
voice="alloy", # or another supported voice, e.g., "echo", "fable", "onyx", "nova"
input=french_text
)
temp_dir = tempfile.mkdtemp()
temp_path = os.path.join(temp_dir, f"audio_{datetime.now().strftime('%Y%m%d_%H%M%S')}.mp3")
with open(temp_path, "wb") as f:
f.write(tts_response.content)
temp_audio_files.append(temp_path)
cleanup_old_audio_files()
return temp_path
except Exception as e:
error_msg = str(e)
if "401" in error_msg or "Invalid API Key" in error_msg:
print(f"Groq TTS Error: Invalid API key, falling back to gTTS")
else:
print(f"Groq TTS Error: {error_msg}, falling back to gTTS")
# Fallback to gTTS if Groq fails
try:
from gtts import gTTS
tts = gTTS(text=french_text, lang='fr')
temp_dir = tempfile.mkdtemp()
temp_path = os.path.join(temp_dir, f"audio_{datetime.now().strftime('%Y%m%d_%H%M%S')}.mp3")
tts.save(temp_path)
temp_audio_files.append(temp_path)
cleanup_old_audio_files()
return temp_path
except Exception as e2:
print(f"gTTS Fallback Error: {str(e2)}")
return None
def analyze_conversation(full_transcript: List[Dict]) -> str:
global current_llm
transcript_text = "\n".join([
f"{msg['role']}: {msg['content']}" for msg in full_transcript
])
analysis_prompt = """Analyze this French conversation and provide:\n1. Grammar corrections with specific examples\n2. Pronunciation tips for common mistakes\n3. Vocabulary suggestions to improve fluency\n4. Overall assessment with encouragement\n\nBe specific, constructive, and encouraging. Format clearly with sections."""
# Try Mistral first
if mistral_client:
try:
messages = [
{"role": "system", "content": analysis_prompt},
{"role": "user", "content": f"Analyze this conversation:\n{transcript_text}"}
]
response = mistral_client.chat.complete(
model="mistral-large-latest",
messages=messages
)
current_llm = "Mistral AI"
return response.choices[0].message.content
except Exception as e:
print(f"Mistral error in analysis: {str(e)}, falling back to Gemini")
# Fallback to Gemini
if gemini_api_key:
try:
genai.configure(api_key=gemini_api_key)
model = genai.GenerativeModel("models/gemini-1.5-flash-latest")
messages = [
{"role": "user", "parts": [analysis_prompt]},
{"role": "user", "parts": [f"Analyze this conversation:\n{transcript_text}"]}
]
response = model.generate_content(messages)
current_llm = "Google Gemini (Fallback)"
return response.text
except Exception as e:
return f"Error generating analysis: {str(e)}"
return "Error: No LLM available for analysis"
def create_app():
with gr.Blocks(title="French Tutor", theme=gr.themes.Soft()) as app:
# State management
conversation_state = gr.State([])
exchange_count = gr.State(0)
full_transcript = gr.State([])
current_scenario = gr.State("")
gr.Markdown("# πŸ‡«πŸ‡· French Conversation Tutor")
gr.Markdown("Practice French through natural conversation! (3 exchanges per session)")
# Model info banner
with gr.Row():
model_info = gr.Markdown(
f"**πŸ€– Models:** LLM: {current_llm} | STT: Groq Whisper | TTS: gTTS",
elem_id="model-info"
)
# Main layout with two columns
with gr.Row():
# Left sidebar (30% width)
with gr.Column(scale=3):
gr.Markdown("## πŸ“š Control Panel")
# Start/New Topic buttons
start_btn = gr.Button("Start New Conversation", variant="primary", size="lg")
new_topic_btn = gr.Button("🎲 Generate New Topic & Restart", variant="secondary", visible=False)
# Topic display in sidebar
with gr.Group():
gr.Markdown("### Current Topic")
sidebar_scenario = gr.Markdown("Click 'Start' to begin", elem_id="sidebar-scenario")
# Analysis section in sidebar
with gr.Group(visible=False) as analysis_group:
gr.Markdown("### πŸ“Š Your Analysis")
analysis_box = gr.Markdown()
restart_btn = gr.Button("πŸ”„ Start Another Conversation", variant="secondary", size="lg")
# Status in sidebar
status_text = gr.Textbox(
label="System Status",
value="Ready to start",
interactive=False
)
# Right main content (70% width)
with gr.Column(scale=7):
# Conversation interface
with gr.Column(visible=False) as conversation_ui:
gr.Markdown("## πŸ’¬ Conversation")
# Chat display - always visible
chat_display = gr.Markdown(value="", elem_id="chat-display")
# Progress indicator
progress_text = gr.Textbox(
label="Progress",
value="Ready to start",
interactive=False
)
# Audio interface
with gr.Row():
audio_input = gr.Audio(
sources=["microphone"],
type="numpy",
label="🎀 Record your response in French"
)
record_btn = gr.Button("Send Response", variant="primary")
# Tutor's audio response
audio_output = gr.Audio(
label="πŸ”Š Tutor's Response",
type="filepath",
autoplay=True
)
def reset_conversation_states():
"""Helper to reset all conversation states"""
return [], 0, [], "", gr.update(value=None)
def start_conversation(scenario_text=None):
"""Initialize a new conversation"""
# Reset global state
global current_llm
print("Starting new conversation...")
# Generate scenario if not provided
if scenario_text is None:
scenario = generate_scenario()
else:
scenario = scenario_text
# Extract the tutor's first message for audio
audio_path = text_to_speech(scenario)
if audio_path is None:
audio_path = gr.update() # No change to audio output
# Format the scenario for display
scenario_display = scenario.strip()
# Create fresh empty states
new_conversation_state = []
new_full_transcript = []
new_exchange_count = 0
print(f"Reset states - Exchange count: {new_exchange_count}, History length: {len(new_conversation_state)}")
return (
gr.update(visible=True), # conversation_ui
scenario_display, # sidebar_scenario
scenario, # current_scenario state
"", # clear chat_display
new_exchange_count, # reset exchange_count
new_conversation_state, # reset conversation_state
new_full_transcript, # reset full_transcript
audio_path, # play initial audio
"Ready to start - 3 exchanges to go", # progress
gr.update(visible=False), # hide analysis_group
gr.update(visible=False), # hide start_btn
gr.update(visible=True), # show new_topic_btn
gr.update(value=None), # clear audio input
gr.update(interactive=True), # enable record button
"Ready to start" # status text
)
def generate_new_topic_and_start():
"""Generate a new topic and start the conversation"""
scenario = generate_scenario()
# Return all the values that start_conversation returns
result = start_conversation(scenario)
# Update the progress text
result_list = list(result)
result_list[8] = "New topic generated! Ready to start - 3 exchanges to go" # Update progress text
return tuple(result_list)
def process_user_audio(audio, chat_text, exchanges, history, transcript, scenario):
"""Process user's audio input and generate response"""
global current_llm
print(f"Processing audio - Exchange count: {exchanges}, History length: {len(history) if history else 0}")
# Ensure exchange count is an integer
if exchanges is None:
exchanges = 0
# Check if conversation is complete
if exchanges >= 3:
return (
chat_text, exchanges, history, transcript,
"Conversation complete! Check your analysis in the sidebar.",
f"Exchange {exchanges} of 3 - Complete!",
gr.update(), gr.update(value=None),
gr.update() # no change to model_info
)
# Ensure states are properly initialized
if history is None:
history = []
if transcript is None:
transcript = []
if chat_text is None:
chat_text = ""
# Check for audio
if audio is None:
return (
chat_text, exchanges, history, transcript,
"Please record audio first",
f"Exchange {exchanges} of 3",
gr.update(), gr.update(value=None),
gr.update() # no change to model_info
)
# Transcribe user's speech
user_text, success = process_speech_to_text(audio)
if not success:
return (
chat_text, exchanges, history, transcript,
user_text, # Error message
f"Exchange {exchanges} of 3",
gr.update(), gr.update(value=None),
gr.update() # no change to model_info
)
# Update chat display with user's message
if chat_text:
chat_text += f"\n\n**You:** {user_text}"
else:
# First message - include scenario context
chat_text = f"{scenario}\n\n---\n\n**You:** {user_text}"
# Get tutor's response
tutor_response = generate_tutor_response(history, user_text)
# Generate audio for tutor's response
audio_path = text_to_speech(tutor_response)
if audio_path is None:
audio_path = gr.update() # No change to audio output
# Update chat display with tutor's response
chat_text += f"\n\n**Mr. Mistral:**\n{tutor_response}"
# Update conversation history (for context)
history.append({"role": "user", "content": user_text})
history.append({"role": "assistant", "content": tutor_response})
# Update transcript (for analysis)
transcript.extend([
{"role": "user", "content": user_text},
{"role": "assistant", "content": tutor_response}
])
# Increment exchange counter
exchanges += 1
# Check if this was the last exchange
if exchanges >= 3:
progress_msg = "Exchange 3 of 3 - Complete! Analysis ready."
else:
progress_msg = f"Exchange {exchanges} of 3 - Keep going!"
# Update model info
model_info_text = f"**πŸ€– Models:** LLM: {current_llm} | STT: Groq Whisper | TTS: gTTS"
# Return updated state
return (
chat_text,
exchanges,
history,
transcript,
f"Great! {progress_msg}",
progress_msg,
audio_path,
gr.update(value=None), # Clear audio input properly
gr.update(value=model_info_text) # Update model info
)
def show_analysis_if_complete(exchanges, transcript):
"""Show analysis in sidebar if conversation is complete"""
if exchanges >= 3:
analysis = analyze_conversation(transcript)
return (
gr.update(visible=True, value=analysis), # analysis_box with content
gr.update(visible=True), # analysis_group
gr.update(interactive=False), # disable record button
gr.update(visible=False) # hide new topic button
)
return (
gr.update(), # no change to analysis_box
gr.update(), # no change to analysis_group
gr.update(interactive=True), # keep record button enabled
gr.update() # no change to new topic button
)
# Initialize API on load
def check_initialization():
status_msgs = []
if mistral_client:
status_msgs.append("βœ“ Mistral AI ready")
if gemini_api_key:
status_msgs.append("βœ“ Gemini fallback ready")
if groq_client:
status_msgs.append("βœ“ Groq STT ready")
status_msgs.append("βœ“ gTTS ready")
if not status_msgs:
return "❌ No APIs initialized!"
return " | ".join(status_msgs)
app.load(
fn=check_initialization,
outputs=status_text
)
# Start conversation
start_btn.click(
fn=start_conversation,
outputs=[
conversation_ui, sidebar_scenario, current_scenario,
chat_display, exchange_count, conversation_state,
full_transcript, audio_output, progress_text,
analysis_group, start_btn, new_topic_btn,
audio_input, record_btn, status_text
]
)
# Generate new topic and start conversation
new_topic_btn.click(
fn=generate_new_topic_and_start,
outputs=[
conversation_ui, sidebar_scenario, current_scenario,
chat_display, exchange_count, conversation_state,
full_transcript, audio_output, progress_text,
analysis_group, start_btn, new_topic_btn,
audio_input, record_btn, status_text
]
)
# Process user audio
record_btn.click(
fn=process_user_audio,
inputs=[
audio_input, chat_display, exchange_count,
conversation_state, full_transcript, current_scenario
],
outputs=[
chat_display, exchange_count, conversation_state,
full_transcript, status_text, progress_text,
audio_output, audio_input, model_info
],
queue=False # Disable queueing to avoid state issues
).then(
fn=show_analysis_if_complete,
inputs=[exchange_count, full_transcript],
outputs=[analysis_box, analysis_group, record_btn, new_topic_btn],
queue=False # Disable queueing to avoid state issues
)
# Restart conversation
restart_btn.click(
fn=start_conversation,
outputs=[
conversation_ui, sidebar_scenario, current_scenario,
chat_display, exchange_count, conversation_state,
full_transcript, audio_output, progress_text,
analysis_group, start_btn, new_topic_btn,
audio_input, record_btn, status_text
]
)
return app
# Launch the app
if __name__ == "__main__":
try:
app = create_app()
app.launch()
except Exception as e:
print(f"Failed to start app: {e}")