Fifa19_webapp / app.py
dcrey7's picture
fifa19_streamlit
48fbeda
raw
history blame
7.01 kB
import numpy as np
import pandas as pd
import streamlit as st
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import NearestNeighbors
import pickle
# Set page config
st.set_page_config(
page_title="FIFA 19 Player Recommender",
page_icon="âš½",
layout="wide"
)
# Load all pickle files
@st.cache_resource
def load_data():
try:
# Load DataFrames from CSV
df3 = pd.read_csv('newdf3.csv', index_col=0)
predictors_scaled = pd.read_csv('predictorsscale.csv', index_col=0)
predictors_df = pd.read_csv('newpredictors.csv', index_col=0)
train_predictors_val = pd.read_csv('train_predictors_val.csv', index_col=0)
fifa = pd.read_csv('newfifa.csv', index_col=0)
df3scaled = pd.read_csv('df3scaled.csv', index_col=0)
# Only the model needs to stay as pickle
with open('finalxbrmodel.pkl', 'rb') as f:
xbr = pickle.load(f)
return df3, predictors_scaled, predictors_df, train_predictors_val, fifa, df3scaled, xbr
except Exception as e:
st.error(f"Error loading data: {str(e)}")
raise e
# Load data
df3, predictors_scaled, predictors_df, train_predictors_val, fifa, df3scaled, xbr = load_data()
predscale_target = predictors_scaled.columns.tolist()
def player_sim_team(team, position, NUM_RECOM, AGE_upper_bound):
# part 1(recommendation)
target_cols = predscale_target
# team stats
team_stats = df3scaled.query('position_group == @position and Club == @team').head(3)[target_cols].mean(axis=0)
team_stats_np = team_stats.values
# player stats by each position
ply_stats = df3scaled.query('position_group == @position and Club != @team and Age1 <= @AGE_upper_bound')[
['ID'] + target_cols]
ply_stats_np = ply_stats[target_cols].values
X = np.vstack((team_stats_np, ply_stats_np))
## KNN
nbrs = NearestNeighbors(n_neighbors=NUM_RECOM + 1, algorithm='auto').fit(X)
dist, rank = nbrs.kneighbors(X)
global indice
global predicted_players_name
global predicted_players_value
global predictions
indice = ply_stats.iloc[rank[0, 1:]].index.tolist()
predicted_players_name=df3['Name'].loc[indice,].tolist()
predicted_players_value=fifa['Value'].loc[indice,].tolist()
display_df1 = predictors_scaled.loc[indice,]
playrpredictorss = predictors_df.loc[indice,]
display_df2 = df3.loc[indice,]
display_df = fifa.loc[indice,]
#part 2(prediction)
predictors_anomaly_processed=playrpredictorss[playrpredictorss.index.isin(list(display_df2['ID']))].copy()
predictors_anomaly_processed['Forward_Skill'] = predictors_anomaly_processed.loc[:,['LS', 'ST', 'RS', 'LW', 'LF', 'CF', 'RF', 'RW']].mean(axis=1)
predictors_anomaly_processed['Midfield_Skill'] = predictors_anomaly_processed.loc[:,['LAM','CAM','RAM', 'LM', 'LCM', 'CM' ,'RCM', 'RM','LDM', 'CDM', 'RDM']].mean(axis=1)
predictors_anomaly_processed['Defence_Skill'] = predictors_anomaly_processed.loc[:,['LWB','RWB', 'LB','LCB','CB','RCB','RB']].mean(axis=1)
predictors_anomaly_processed = predictors_anomaly_processed.drop(['LS', 'ST', 'RS', 'LW', 'LF', 'CF', 'RF', 'RW',
'LAM','CAM','RAM', 'LM', 'LCM', 'CM' ,'RCM', 'RM','LDM', 'CDM', 'RDM',
'LWB','RWB', 'LB','LCB','CB','RCB','RB'], axis = 1)
predictors_anomaly_processed=predictors_anomaly_processed.drop(predictors_anomaly_processed.iloc[:,predictors_anomaly_processed.columns.get_loc('Position_CAM'):predictors_anomaly_processed.columns.get_loc('Position_ST')+1], axis=1)
predictors_anomaly_processed=predictors_anomaly_processed[train_predictors_val.columns]
predictors_anomaly_processed[['International Reputation','Real Face']]=predictors_anomaly_processed[['International Reputation','Real Face']].astype('category')
scaler = StandardScaler()
predictors_anomaly_processed[predictors_anomaly_processed.select_dtypes(include=['float64','float32','int64','int32'], exclude=['category']).columns] = scaler.fit_transform(predictors_anomaly_processed.select_dtypes(include=['float64','float32','int64','int32'], exclude=['category']))
predictors_anomaly_processed[predictors_anomaly_processed.select_dtypes(include='category').columns]=predictors_anomaly_processed[predictors_anomaly_processed.select_dtypes(include='category').columns].astype('int')
predictions = abs(xbr.predict(predictors_anomaly_processed))
predictions = predictions.astype('int64')
result=final_pred(NUM_RECOM,predictions,predicted_players_value,predicted_players_name)
return result
def final_pred(num_of_players,b=[],c=[],d=[]):
z=[]
for m in range(0,num_of_players):
c[m]=((c[m]+b[m])/2)
z.append({"starting_bid":c[m],"player_name":d[m]})
return z
def main():
st.title("FIFA 19 Player Recommender 🎮⚽")
# Sidebar inputs
st.sidebar.header("Search Parameters")
# Get unique teams and positions
teams = sorted(df3['Club'].unique())
positions = sorted(df3['position_group'].unique())
team_chosen = st.sidebar.selectbox("Select Team", teams)
postion_chosen = st.sidebar.selectbox("Select Position", positions)
num_of_players = st.sidebar.slider("Number of Players to Recommend", 1, 10, 5)
age_up = st.sidebar.slider("Maximum Age", 16, 45, 30)
if st.sidebar.button("Get Recommendations"):
with st.spinner("Finding similar players..."):
recommendations = player_sim_team(team_chosen, postion_chosen, num_of_players, age_up)
# Display results in a nice format
st.subheader(f"Recommended Players for {team_chosen} - {postion_chosen}")
# Create columns for each player
cols = st.columns(min(3, len(recommendations)))
for idx, player in enumerate(recommendations):
col_idx = idx % 3
with cols[col_idx]:
st.markdown(f"""
#### {player['player_name']}
**Estimated Value:** €{player['starting_bid']:,.2f}
---
""")
if __name__ == '__main__':
main()
#print("postions=side_df,cent_df,cent_md,side_md,cent_fw,side_fw,goalkeep")
#print("team=any club teams in any of the countries ")
#print("*********************************************** \n")
#team_chosen = str(input("Enter the team you are looking for: \n"))
#postion_chosen = str(input("Enter the position you are looking for: \n"))
#num_of_players = input("Enter the number of similar players you are looking for: \n")
#age_up = input("Enter the age limit: ")
#print("***please have some biscuits, it will take some time***")
#player_sim_team(team_chosen,postion_chosen, int(num_of_players), int(age_up))
#finalfunction = player_sim_team(team_chosen,postion_chosen, int(num_of_players), int(age_up))
#pickle.dump(finalfunction, open('finalfunction.pkl', 'wb'))