Upload model.py
Browse files
model.py
ADDED
|
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
CIFAR 10
|
| 3 |
+
INPUT - [3, 32, 32]
|
| 4 |
+
"""
|
| 5 |
+
import torch.nn as nn
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
class BasicBlock(nn.Module):
|
| 9 |
+
def __init__(self, in_channel, out_channel, dropout):
|
| 10 |
+
super(BasicBlock, self).__init__()
|
| 11 |
+
self.cblock = nn.Sequential(
|
| 12 |
+
*[
|
| 13 |
+
self._get_base_layer(
|
| 14 |
+
in_channel if i == 0 else out_channel, out_channel, dropout
|
| 15 |
+
)
|
| 16 |
+
for i in range(2)
|
| 17 |
+
]
|
| 18 |
+
)
|
| 19 |
+
|
| 20 |
+
def _get_base_layer(self, in_channel, out_channel, dropout):
|
| 21 |
+
return nn.Sequential(
|
| 22 |
+
nn.Conv2d(
|
| 23 |
+
in_channel,
|
| 24 |
+
out_channel,
|
| 25 |
+
kernel_size=3,
|
| 26 |
+
padding=1,
|
| 27 |
+
padding_mode="replicate",
|
| 28 |
+
bias=False,
|
| 29 |
+
),
|
| 30 |
+
nn.BatchNorm2d(out_channel),
|
| 31 |
+
nn.ReLU(),
|
| 32 |
+
nn.Dropout(dropout),
|
| 33 |
+
)
|
| 34 |
+
|
| 35 |
+
def forward(self, x):
|
| 36 |
+
return self.cblock(x) + x
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
class DavidPageNet(nn.Module):
|
| 40 |
+
def __init__(self, channels=[64, 128, 256, 512], dropout=0.01):
|
| 41 |
+
super(DavidPageNet, self).__init__()
|
| 42 |
+
self.block0 = self._get_base_layer(3, channels[0], pool=False)
|
| 43 |
+
self.block1 = nn.Sequential(
|
| 44 |
+
*[
|
| 45 |
+
self._get_base_layer(channels[0], channels[1]),
|
| 46 |
+
BasicBlock(channels[1], channels[1], dropout),
|
| 47 |
+
]
|
| 48 |
+
)
|
| 49 |
+
|
| 50 |
+
self.block2 = self._get_base_layer(channels[1], channels[2])
|
| 51 |
+
self.block3 = nn.Sequential(
|
| 52 |
+
*[
|
| 53 |
+
self._get_base_layer(channels[2], channels[3]),
|
| 54 |
+
BasicBlock(channels[3], channels[3], dropout),
|
| 55 |
+
]
|
| 56 |
+
)
|
| 57 |
+
|
| 58 |
+
self.logit = nn.Sequential(
|
| 59 |
+
nn.MaxPool2d(4),
|
| 60 |
+
nn.Flatten(),
|
| 61 |
+
nn.Linear(512, 10),
|
| 62 |
+
)
|
| 63 |
+
|
| 64 |
+
def _get_base_layer(self, in_channel, out_channel, pool=True):
|
| 65 |
+
return nn.Sequential(
|
| 66 |
+
nn.Conv2d(
|
| 67 |
+
in_channel,
|
| 68 |
+
out_channel,
|
| 69 |
+
stride=1,
|
| 70 |
+
padding=1,
|
| 71 |
+
kernel_size=3,
|
| 72 |
+
bias=False,
|
| 73 |
+
padding_mode="replicate",
|
| 74 |
+
),
|
| 75 |
+
nn.MaxPool2d(2) if pool else nn.Identity(),
|
| 76 |
+
nn.BatchNorm2d(out_channel),
|
| 77 |
+
nn.ReLU(),
|
| 78 |
+
)
|
| 79 |
+
|
| 80 |
+
def forward(self, x):
|
| 81 |
+
x = self.block0(x)
|
| 82 |
+
|
| 83 |
+
x = self.block1(x)
|
| 84 |
+
x = self.block2(x)
|
| 85 |
+
x = self.block3(x)
|
| 86 |
+
|
| 87 |
+
return self.logit(x)
|