Upload 35 files
Browse files- app.py +29 -0
- checkpoint/resunet/decoder.pt +3 -0
- requirements.txt +12 -0
- sample/bird_plane.jpeg +0 -0
- sample/dog.jpeg +0 -0
- sample/group.webp +0 -0
- sample/horse_person_cycle.jpeg +0 -0
- sample/mask.jpeg +0 -0
- sample/people.jpeg +0 -0
- sample/titanic.jpeg +0 -0
- src/datasets/__init__.py +0 -0
- src/datasets/coco/README.md +6 -0
- src/datasets/coco/dataset.ipynb +0 -0
- src/datasets/coco/dataset.py +137 -0
- src/datasets/coco/samples/airplane.png +0 -0
- src/datasets/coco/samples/giraffe.png +0 -0
- src/datasets/coco/samples/people.png +0 -0
- src/datasets/coco/samples/zebra.png +0 -0
- src/models/unet/__init__.py +0 -0
- src/models/unet/config/carvana_config.yml +81 -0
- src/models/unet/config/paper_config.yml +60 -0
- src/models/unet/config/resnet_config.yml +32 -0
- src/models/unet/decoder/__init__.py +1 -0
- src/models/unet/decoder/decoder.py +76 -0
- src/models/unet/encoder/__init__.py +2 -0
- src/models/unet/encoder/encoder.py +80 -0
- src/models/unet/encoder/resnet.py +30 -0
- src/models/unet/example/model_sample.ipynb +532 -0
- src/models/unet/resunet.py +66 -0
- src/run/unet/example/binary_segmentation_resunet.ipynb +0 -0
- src/run/unet/inference.py +111 -0
- src/unet/__init__.py +0 -0
- src/unet/config/carvana_config.yml +81 -0
- src/unet/config/paper_config.yml +60 -0
- src/unet/model.py +175 -0
app.py
ADDED
|
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
|
| 3 |
+
import gradio as gr
|
| 4 |
+
|
| 5 |
+
from src.run.unet.inference import ResUnetInfer
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
infer = ResUnetInfer(
|
| 9 |
+
model_path="./checkpoint/resunet/decoder.pt",
|
| 10 |
+
config_path="./src/models/unet/config/resnet_config.yml",
|
| 11 |
+
)
|
| 12 |
+
|
| 13 |
+
demo = gr.Interface(
|
| 14 |
+
fn=infer.infer,
|
| 15 |
+
inputs=[
|
| 16 |
+
gr.Image(
|
| 17 |
+
shape=(224, 224),
|
| 18 |
+
label="Input Image",
|
| 19 |
+
value="./sample/bird_plane.jpeg",
|
| 20 |
+
)
|
| 21 |
+
],
|
| 22 |
+
outputs=[
|
| 23 |
+
gr.Image(),
|
| 24 |
+
],
|
| 25 |
+
examples=[[os.path.join("./sample/", f)] for f in os.listdir("./sample/")],
|
| 26 |
+
)
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
demo.launch()
|
checkpoint/resunet/decoder.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:df2780f1ec58f0a9653c951b341102097ef20a8bbd9cd9aba2ea8e789876b9ae
|
| 3 |
+
size 189285667
|
requirements.txt
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch
|
| 2 |
+
torchinfo
|
| 3 |
+
easydict
|
| 4 |
+
gradio
|
| 5 |
+
torchvision
|
| 6 |
+
numpy
|
| 7 |
+
grad - cam
|
| 8 |
+
Pillow
|
| 9 |
+
albumentations
|
| 10 |
+
tqdm
|
| 11 |
+
opencv - python
|
| 12 |
+
matplotlib
|
sample/bird_plane.jpeg
ADDED
|
sample/dog.jpeg
ADDED
|
sample/group.webp
ADDED
|
sample/horse_person_cycle.jpeg
ADDED
|
sample/mask.jpeg
ADDED
|
sample/people.jpeg
ADDED
|
sample/titanic.jpeg
ADDED
|
src/datasets/__init__.py
ADDED
|
File without changes
|
src/datasets/coco/README.md
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Coco Dataset Sample
|
| 2 |
+
|
| 3 |
+

|
| 4 |
+

|
| 5 |
+

|
| 6 |
+

|
src/datasets/coco/dataset.ipynb
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
src/datasets/coco/dataset.py
ADDED
|
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os.path
|
| 2 |
+
from typing import Any, Callable, List, Optional, Tuple
|
| 3 |
+
|
| 4 |
+
import matplotlib.pyplot as plt
|
| 5 |
+
import numpy as np
|
| 6 |
+
from PIL import Image
|
| 7 |
+
from torchvision.datasets import VisionDataset
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
class CocoDetection(VisionDataset):
|
| 11 |
+
def __init__(
|
| 12 |
+
self,
|
| 13 |
+
root: str,
|
| 14 |
+
annFile: str,
|
| 15 |
+
class_names: Optional[List] = None,
|
| 16 |
+
transform: Optional[Callable] = None,
|
| 17 |
+
target_transform: Optional[Callable] = None,
|
| 18 |
+
transforms: Optional[Callable] = None,
|
| 19 |
+
) -> None:
|
| 20 |
+
super().__init__(root, transforms, transform, target_transform)
|
| 21 |
+
from pycocotools.coco import COCO
|
| 22 |
+
|
| 23 |
+
self.coco = COCO(annFile)
|
| 24 |
+
|
| 25 |
+
if class_names is not None:
|
| 26 |
+
cat_ids = self._get_category_ids_from_name(category_names=class_names)
|
| 27 |
+
self.ids = list(
|
| 28 |
+
sorted((self._get_img_ids_for_category_ids(category_ids=cat_ids)))
|
| 29 |
+
)
|
| 30 |
+
|
| 31 |
+
else:
|
| 32 |
+
cat_ids = self.coco.getCatIds()
|
| 33 |
+
self.ids = list(sorted(self.coco.imgs.keys()))
|
| 34 |
+
|
| 35 |
+
self.cat2idx = {cat_id: idx + 1 for idx, cat_id in enumerate(cat_ids)}
|
| 36 |
+
self.cat2idx[0] = 0
|
| 37 |
+
|
| 38 |
+
def _load_image(self, id: int) -> Image.Image:
|
| 39 |
+
path = self.coco.loadImgs(id)[0]["file_name"]
|
| 40 |
+
return Image.open(os.path.join(self.root, path)).convert("RGB")
|
| 41 |
+
|
| 42 |
+
def _load_target(self, id: int) -> List[Any]:
|
| 43 |
+
return self.coco.loadAnns(self.coco.getAnnIds(id))
|
| 44 |
+
|
| 45 |
+
def __getitem__(self, index: int) -> Tuple[Any, Any]:
|
| 46 |
+
id = self.ids[index]
|
| 47 |
+
image = self._load_image(id)
|
| 48 |
+
mask = self._load_target(id)
|
| 49 |
+
|
| 50 |
+
mask = self._get_mask_in_channels(image, mask)
|
| 51 |
+
|
| 52 |
+
if self.transform is not None:
|
| 53 |
+
image = self.transform(image=np.array(image))["image"]
|
| 54 |
+
|
| 55 |
+
if self.target_transform is not None:
|
| 56 |
+
mask = self.target_transform(image=mask)["image"]
|
| 57 |
+
|
| 58 |
+
return image, (mask != 0).int()
|
| 59 |
+
|
| 60 |
+
def __len__(self) -> int:
|
| 61 |
+
return len(self.ids)
|
| 62 |
+
|
| 63 |
+
def _get_all_classes(self):
|
| 64 |
+
catIDs = self.coco.getCatIds()
|
| 65 |
+
return self.coco.loadCats(catIDs)
|
| 66 |
+
|
| 67 |
+
def _get_category_info_from_ids(self, ids: list):
|
| 68 |
+
all_cat = self._get_all_classes()
|
| 69 |
+
return [category for category in all_cat if category["id"] in ids]
|
| 70 |
+
|
| 71 |
+
def _get_category_ids_from_name(self, category_names: list):
|
| 72 |
+
return self.coco.getCatIds(catNms=category_names)
|
| 73 |
+
|
| 74 |
+
def _get_img_ids_for_category_ids(self, category_ids: list):
|
| 75 |
+
img_ids = []
|
| 76 |
+
|
| 77 |
+
for catIds in category_ids:
|
| 78 |
+
img_ids.extend(self.coco.getImgIds(catIds=catIds))
|
| 79 |
+
|
| 80 |
+
return img_ids
|
| 81 |
+
|
| 82 |
+
def _get_img_ids_for_category_names(self, category_names: list):
|
| 83 |
+
img_ids = []
|
| 84 |
+
category_ids = self._get_category_ids_from_name(category_names=class_names)
|
| 85 |
+
|
| 86 |
+
for catIds in category_ids:
|
| 87 |
+
img_ids.extend(self.coco.getImgIds(catIds=catIds))
|
| 88 |
+
|
| 89 |
+
return img_ids
|
| 90 |
+
|
| 91 |
+
def _get_all_category_ids_in_img_id(self, img_id: int) -> List:
|
| 92 |
+
target = self._load_target(img_id)
|
| 93 |
+
return list({annotation["category_id"] for annotation in target})
|
| 94 |
+
|
| 95 |
+
def _get_mask_aggregated(self, image: Image, annotations: List) -> np.array:
|
| 96 |
+
w, h = image.size
|
| 97 |
+
mask = np.zeros((h, w))
|
| 98 |
+
|
| 99 |
+
for annotation in annotations:
|
| 100 |
+
category_id = annotation["category_id"]
|
| 101 |
+
|
| 102 |
+
if category_id in self.cat2idx:
|
| 103 |
+
pixel_value = self.cat2idx[category_id]
|
| 104 |
+
mask = np.maximum(self.coco.annToMask(annotation) * pixel_value, mask)
|
| 105 |
+
|
| 106 |
+
return mask
|
| 107 |
+
|
| 108 |
+
def _get_mask_in_channels(self, image: Image, annotations: List) -> np.array:
|
| 109 |
+
w, h = image.size
|
| 110 |
+
mask = np.zeros((len(self.cat2idx), h, w))
|
| 111 |
+
|
| 112 |
+
for annotation in annotations:
|
| 113 |
+
category_id = annotation["category_id"]
|
| 114 |
+
|
| 115 |
+
if category_id in self.cat2idx:
|
| 116 |
+
pixel_value = self.cat2idx[category_id]
|
| 117 |
+
mask[pixel_value] = np.maximum(
|
| 118 |
+
self.coco.annToMask(annotation), mask[pixel_value]
|
| 119 |
+
)
|
| 120 |
+
|
| 121 |
+
# [h, w, channels]
|
| 122 |
+
mask = np.transpose(mask, (1, 2, 0))
|
| 123 |
+
return mask
|
| 124 |
+
|
| 125 |
+
def _plot_image_and_mask(self, index):
|
| 126 |
+
image, mask = self.__getitem__(index)
|
| 127 |
+
|
| 128 |
+
# Create a figure with two subplots side by side
|
| 129 |
+
fig, axs = plt.subplots(1, 2, figsize=(7, 3))
|
| 130 |
+
|
| 131 |
+
axs[0].imshow(image.permute(1, 2, 0))
|
| 132 |
+
axs[0].set_title("Image")
|
| 133 |
+
|
| 134 |
+
axs[1].imshow(mask.sum(0, keepdim=True).permute(1, 2, 0))
|
| 135 |
+
axs[1].set_title("Mask")
|
| 136 |
+
|
| 137 |
+
plt.show()
|
src/datasets/coco/samples/airplane.png
ADDED
|
src/datasets/coco/samples/giraffe.png
ADDED
|
src/datasets/coco/samples/people.png
ADDED
|
src/datasets/coco/samples/zebra.png
ADDED
|
src/models/unet/__init__.py
ADDED
|
File without changes
|
src/models/unet/config/carvana_config.yml
ADDED
|
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Input (1, 512, 512)
|
| 2 |
+
# Output (64, 512, 512)
|
| 3 |
+
decoder_config:
|
| 4 |
+
block5: # (1024, 32, 32)
|
| 5 |
+
in_channels: 1024
|
| 6 |
+
kernel_size: 3
|
| 7 |
+
out_channels: 1024
|
| 8 |
+
padding:
|
| 9 |
+
- 1
|
| 10 |
+
- 1
|
| 11 |
+
stride: 1 # (1024, 32, 32)
|
| 12 |
+
block4: # (1024, 32, 32)
|
| 13 |
+
in_channels: 1024
|
| 14 |
+
kernel_size: 2
|
| 15 |
+
out_channels: 512
|
| 16 |
+
padding:
|
| 17 |
+
- 0
|
| 18 |
+
- 1
|
| 19 |
+
stride: 2 # (512, 64, 64)
|
| 20 |
+
block3: # (512, 64, 64)
|
| 21 |
+
in_channels: 512
|
| 22 |
+
kernel_size: 2
|
| 23 |
+
out_channels: 256
|
| 24 |
+
padding:
|
| 25 |
+
- 0
|
| 26 |
+
- 1
|
| 27 |
+
stride: 2 # (256, 128, 128)
|
| 28 |
+
block2: # (256, 128, 128)
|
| 29 |
+
in_channels: 256
|
| 30 |
+
kernel_size: 2
|
| 31 |
+
out_channels: 128
|
| 32 |
+
padding:
|
| 33 |
+
- 0
|
| 34 |
+
- 1
|
| 35 |
+
stride: 2 # (128, 256, 256)
|
| 36 |
+
block1: # (128, 256, 256)
|
| 37 |
+
in_channels: 128
|
| 38 |
+
kernel_size: 2
|
| 39 |
+
out_channels: 64
|
| 40 |
+
padding:
|
| 41 |
+
- 0
|
| 42 |
+
- 1
|
| 43 |
+
stride: 2 # (64, 512, 512)
|
| 44 |
+
encoder_config:
|
| 45 |
+
block1: # (1, 512, 512)
|
| 46 |
+
all_padding: true
|
| 47 |
+
in_channels: 1
|
| 48 |
+
maxpool: true
|
| 49 |
+
n_layers: 2
|
| 50 |
+
out_channels: 64 # (64, 256, 256)
|
| 51 |
+
block2: # (64, 256, 256)
|
| 52 |
+
all_padding: true
|
| 53 |
+
in_channels: 64
|
| 54 |
+
maxpool: true
|
| 55 |
+
n_layers: 2
|
| 56 |
+
out_channels: 128 # (128, 128, 128)
|
| 57 |
+
block3: # (128, 128, 128)
|
| 58 |
+
all_padding: true
|
| 59 |
+
in_channels: 128
|
| 60 |
+
maxpool: true
|
| 61 |
+
n_layers: 2
|
| 62 |
+
out_channels: 256 # (256, 64, 64)
|
| 63 |
+
block4: # (256, 64, 64)
|
| 64 |
+
all_padding: true
|
| 65 |
+
in_channels: 256
|
| 66 |
+
maxpool: true
|
| 67 |
+
n_layers: 2
|
| 68 |
+
out_channels: 512 # (512, 32, 32)
|
| 69 |
+
block5: # (512, 32, 32)
|
| 70 |
+
all_padding: true
|
| 71 |
+
in_channels: 512
|
| 72 |
+
maxpool: false
|
| 73 |
+
n_layers: 2
|
| 74 |
+
out_channels: 512 # (512, 32, 32)
|
| 75 |
+
block6: # (512, 32, 32)
|
| 76 |
+
all_padding: true
|
| 77 |
+
in_channels: 512
|
| 78 |
+
maxpool: false
|
| 79 |
+
n_layers: 2
|
| 80 |
+
out_channels: 1024 # (1024, 32, 32)
|
| 81 |
+
nclasses: 2
|
src/models/unet/config/paper_config.yml
ADDED
|
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Original UNet Paper Configuration
|
| 2 |
+
# Input shape [1, 572, 572]
|
| 3 |
+
# Output shape [64, 388, 388]
|
| 4 |
+
decoder_config:
|
| 5 |
+
block4: # [1024, 28, 28]
|
| 6 |
+
in_channels: 1024
|
| 7 |
+
kernel_size: 2
|
| 8 |
+
out_channels: 512
|
| 9 |
+
padding: [0, 0]
|
| 10 |
+
stride: 2 # [512, 52, 52]
|
| 11 |
+
block3: # [512, 52, 52]
|
| 12 |
+
in_channels: 512
|
| 13 |
+
kernel_size: 2
|
| 14 |
+
out_channels: 256
|
| 15 |
+
padding: [0, 0]
|
| 16 |
+
stride: 2 # [256, 100, 100]
|
| 17 |
+
block2: # [256, 100, 100]
|
| 18 |
+
in_channels: 256
|
| 19 |
+
kernel_size: 2
|
| 20 |
+
out_channels: 128
|
| 21 |
+
padding: [0, 0]
|
| 22 |
+
stride: 2 # [128, 196, 196]
|
| 23 |
+
block1: # [128, 196, 196]
|
| 24 |
+
in_channels: 128
|
| 25 |
+
kernel_size: 2
|
| 26 |
+
out_channels: 64
|
| 27 |
+
padding: [0, 0]
|
| 28 |
+
stride: 2 # [64, 388, 388]
|
| 29 |
+
encoder_config:
|
| 30 |
+
block1: # [1, 572, 572]
|
| 31 |
+
all_padding: false
|
| 32 |
+
in_channels: 1
|
| 33 |
+
maxpool: true
|
| 34 |
+
n_layers: 2
|
| 35 |
+
out_channels: 64 # [64, 568/2, 568/2] = [64, 284, 284]
|
| 36 |
+
block2: # [64, 568/2, 568/2] = [64, 284, 284]
|
| 37 |
+
all_padding: false
|
| 38 |
+
in_channels: 64
|
| 39 |
+
maxpool: true
|
| 40 |
+
n_layers: 2
|
| 41 |
+
out_channels: 128 # [128, 280/2, 280/2] = [128, 140, 140]
|
| 42 |
+
block3: # [128, 280/2, 280/2] = [128, 140, 140]
|
| 43 |
+
all_padding: false
|
| 44 |
+
in_channels: 128
|
| 45 |
+
maxpool: true
|
| 46 |
+
n_layers: 2
|
| 47 |
+
out_channels: 256 # [256, 136/2, 136/2] = [256, 68, 68]
|
| 48 |
+
block4: # [256, 136/2, 136/2] = [256, 68, 68]
|
| 49 |
+
all_padding: false
|
| 50 |
+
in_channels: 256
|
| 51 |
+
maxpool: true
|
| 52 |
+
n_layers: 2
|
| 53 |
+
out_channels: 512 # [512, 64/2, 64/2] = [512, 32, 32]
|
| 54 |
+
block5: # [512, 64/2, 64/2] = [512, 32, 32]
|
| 55 |
+
all_padding: false
|
| 56 |
+
in_channels: 512
|
| 57 |
+
maxpool: false
|
| 58 |
+
n_layers: 2
|
| 59 |
+
out_channels: 1024 # [1024, 28, 28]
|
| 60 |
+
nclasses: 2
|
src/models/unet/config/resnet_config.yml
ADDED
|
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Original UNet Paper Configuration
|
| 2 |
+
# Input shape [1, 572, 572]
|
| 3 |
+
# Output shape [64, 388, 388]
|
| 4 |
+
decoder_config:
|
| 5 |
+
block4: # [2048, 16, 16]
|
| 6 |
+
in_channels: 2048
|
| 7 |
+
kernel_size: 2
|
| 8 |
+
out_channels: 1024
|
| 9 |
+
padding: [0, 0]
|
| 10 |
+
stride: 2 # [1024, 28, 28]
|
| 11 |
+
block3: # [1024, 28, 28]
|
| 12 |
+
in_channels: 1024
|
| 13 |
+
kernel_size: 2
|
| 14 |
+
out_channels: 512
|
| 15 |
+
padding: [0, 0]
|
| 16 |
+
stride: 2 # [512, 52, 52]
|
| 17 |
+
block2: # [512, 52, 52]
|
| 18 |
+
in_channels: 512
|
| 19 |
+
kernel_size: 2
|
| 20 |
+
out_channels: 128
|
| 21 |
+
padding: [0, 0]
|
| 22 |
+
stride: 2 # [256, 100, 100]
|
| 23 |
+
block1: # [256, 100, 100]
|
| 24 |
+
in_channels: 128
|
| 25 |
+
kernel_size: 2
|
| 26 |
+
out_channels: 64
|
| 27 |
+
padding: [0, 0]
|
| 28 |
+
stride: 2 # [128, 196, 196]
|
| 29 |
+
nclasses: 1
|
| 30 |
+
input_size: [224, 224]
|
| 31 |
+
mean: [0.485, 0.456, 0.406]
|
| 32 |
+
std: [0.229, 0.224, 0.225]
|
src/models/unet/decoder/__init__.py
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
from .decoder import Decoder as CustomDecoder
|
src/models/unet/decoder/decoder.py
ADDED
|
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
class DecoderLayer(nn.Module):
|
| 6 |
+
def __init__(
|
| 7 |
+
self, in_channels, out_channels, kernel_size=2, stride=2, padding=[0, 0]
|
| 8 |
+
):
|
| 9 |
+
super(DecoderLayer, self).__init__()
|
| 10 |
+
self.up_conv = nn.ConvTranspose2d(
|
| 11 |
+
in_channels=in_channels,
|
| 12 |
+
out_channels=in_channels // 2,
|
| 13 |
+
kernel_size=kernel_size,
|
| 14 |
+
stride=stride,
|
| 15 |
+
padding=padding[0],
|
| 16 |
+
)
|
| 17 |
+
|
| 18 |
+
self.bn1 = nn.BatchNorm2d(in_channels)
|
| 19 |
+
|
| 20 |
+
self.conv = nn.Sequential(
|
| 21 |
+
*[
|
| 22 |
+
self._conv_relu_layer(
|
| 23 |
+
in_channels=in_channels if i == 0 else out_channels,
|
| 24 |
+
out_channels=out_channels,
|
| 25 |
+
padding=padding[1],
|
| 26 |
+
)
|
| 27 |
+
for i in range(2)
|
| 28 |
+
]
|
| 29 |
+
)
|
| 30 |
+
|
| 31 |
+
def _conv_relu_layer(self, in_channels, out_channels, padding=0):
|
| 32 |
+
return nn.Sequential(
|
| 33 |
+
nn.Conv2d(
|
| 34 |
+
in_channels=in_channels,
|
| 35 |
+
out_channels=out_channels,
|
| 36 |
+
kernel_size=3,
|
| 37 |
+
padding=padding,
|
| 38 |
+
),
|
| 39 |
+
nn.ReLU(),
|
| 40 |
+
nn.BatchNorm2d(out_channels),
|
| 41 |
+
)
|
| 42 |
+
|
| 43 |
+
@staticmethod
|
| 44 |
+
def crop_cat(x, encoder_output):
|
| 45 |
+
delta = (encoder_output.shape[-1] - x.shape[-1]) // 2
|
| 46 |
+
encoder_output = encoder_output[
|
| 47 |
+
:, :, delta : delta + x.shape[-1], delta : delta + x.shape[-1]
|
| 48 |
+
]
|
| 49 |
+
return torch.cat((encoder_output, x), dim=1)
|
| 50 |
+
|
| 51 |
+
def forward(self, x, encoder_output):
|
| 52 |
+
x = self.crop_cat(self.up_conv(x), encoder_output)
|
| 53 |
+
x = self.bn1(x)
|
| 54 |
+
return self.conv(x)
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
class Decoder(nn.Module):
|
| 58 |
+
def __init__(self, config):
|
| 59 |
+
super(Decoder, self).__init__()
|
| 60 |
+
self.decoder = nn.ModuleDict(
|
| 61 |
+
{
|
| 62 |
+
name: DecoderLayer(
|
| 63 |
+
in_channels=block["in_channels"],
|
| 64 |
+
out_channels=block["out_channels"],
|
| 65 |
+
kernel_size=block["kernel_size"],
|
| 66 |
+
stride=block["stride"],
|
| 67 |
+
padding=block["padding"],
|
| 68 |
+
)
|
| 69 |
+
for name, block in config.items()
|
| 70 |
+
}
|
| 71 |
+
)
|
| 72 |
+
|
| 73 |
+
def forward(self, x, encoder_output):
|
| 74 |
+
for name, block in self.decoder.items():
|
| 75 |
+
x = block(x, encoder_output[name])
|
| 76 |
+
return x
|
src/models/unet/encoder/__init__.py
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from .encoder import Encoder as CustomEncoder
|
| 2 |
+
from .resnet import Encoder as ResnetEncoder
|
src/models/unet/encoder/encoder.py
ADDED
|
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch.nn as nn
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
"""
|
| 5 |
+
downsampling blocks
|
| 6 |
+
(first half of the 'U' in UNet)
|
| 7 |
+
[ENCODER]
|
| 8 |
+
"""
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
class EncoderLayer(nn.Module):
|
| 12 |
+
def __init__(
|
| 13 |
+
self,
|
| 14 |
+
in_channels=1,
|
| 15 |
+
out_channels=64,
|
| 16 |
+
n_layers=2,
|
| 17 |
+
all_padding=False,
|
| 18 |
+
maxpool=True,
|
| 19 |
+
):
|
| 20 |
+
super(EncoderLayer, self).__init__()
|
| 21 |
+
|
| 22 |
+
f_in_channel = lambda layer: in_channels if layer == 0 else out_channels
|
| 23 |
+
f_padding = lambda layer: 1 if layer >= 2 or all_padding else 0
|
| 24 |
+
|
| 25 |
+
self.layer = nn.Sequential(
|
| 26 |
+
*[
|
| 27 |
+
self._conv_relu_layer(
|
| 28 |
+
in_channels=f_in_channel(i),
|
| 29 |
+
out_channels=out_channels,
|
| 30 |
+
padding=f_padding(i),
|
| 31 |
+
)
|
| 32 |
+
for i in range(n_layers)
|
| 33 |
+
]
|
| 34 |
+
)
|
| 35 |
+
self.maxpool = maxpool
|
| 36 |
+
|
| 37 |
+
def _conv_relu_layer(self, in_channels, out_channels, padding=0):
|
| 38 |
+
return nn.Sequential(
|
| 39 |
+
nn.Conv2d(
|
| 40 |
+
in_channels=in_channels,
|
| 41 |
+
out_channels=out_channels,
|
| 42 |
+
kernel_size=3,
|
| 43 |
+
padding=padding,
|
| 44 |
+
),
|
| 45 |
+
nn.ReLU(),
|
| 46 |
+
nn.BatchNorm2d(out_channels),
|
| 47 |
+
)
|
| 48 |
+
|
| 49 |
+
def forward(self, x):
|
| 50 |
+
return self.layer(x)
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
class Encoder(nn.Module):
|
| 54 |
+
def __init__(self, config):
|
| 55 |
+
super(Encoder, self).__init__()
|
| 56 |
+
self.encoder = nn.ModuleDict(
|
| 57 |
+
{
|
| 58 |
+
name: EncoderLayer(
|
| 59 |
+
in_channels=block["in_channels"],
|
| 60 |
+
out_channels=block["out_channels"],
|
| 61 |
+
n_layers=block["n_layers"],
|
| 62 |
+
all_padding=block["all_padding"],
|
| 63 |
+
maxpool=block["maxpool"],
|
| 64 |
+
)
|
| 65 |
+
for name, block in config.items()
|
| 66 |
+
}
|
| 67 |
+
)
|
| 68 |
+
self.maxpool = nn.MaxPool2d(2)
|
| 69 |
+
|
| 70 |
+
def forward(self, x):
|
| 71 |
+
output = dict()
|
| 72 |
+
|
| 73 |
+
for i, (block_name, block) in enumerate(self.encoder.items()):
|
| 74 |
+
x = block(x)
|
| 75 |
+
output[block_name] = x
|
| 76 |
+
|
| 77 |
+
if block.maxpool:
|
| 78 |
+
x = self.maxpool(x)
|
| 79 |
+
|
| 80 |
+
return x, output
|
src/models/unet/encoder/resnet.py
ADDED
|
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from torchvision.models import resnet50, ResNet50_Weights
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
class Encoder(nn.Module):
|
| 6 |
+
def __init__(self):
|
| 7 |
+
super(Encoder, self).__init__()
|
| 8 |
+
resnet = resnet50(weights=ResNet50_Weights.IMAGENET1K_V1)
|
| 9 |
+
|
| 10 |
+
for param in resnet.parameters():
|
| 11 |
+
param.requires_grad_(False)
|
| 12 |
+
|
| 13 |
+
self.stages = nn.ModuleDict(
|
| 14 |
+
{
|
| 15 |
+
"block1": nn.Sequential(resnet.conv1, resnet.bn1, resnet.relu),
|
| 16 |
+
"block2": nn.Sequential(resnet.maxpool, resnet.layer1),
|
| 17 |
+
"block3": resnet.layer2,
|
| 18 |
+
"block4": resnet.layer3,
|
| 19 |
+
"block5": resnet.layer4,
|
| 20 |
+
}
|
| 21 |
+
)
|
| 22 |
+
|
| 23 |
+
def forward(self, x):
|
| 24 |
+
stages = {}
|
| 25 |
+
|
| 26 |
+
for name, stage in self.stages.items():
|
| 27 |
+
x = stage(x)
|
| 28 |
+
stages[name] = x
|
| 29 |
+
|
| 30 |
+
return x, stages
|
src/models/unet/example/model_sample.ipynb
ADDED
|
@@ -0,0 +1,532 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "code",
|
| 5 |
+
"execution_count": 1,
|
| 6 |
+
"id": "310eb987-37b7-4620-b533-089644fbb440",
|
| 7 |
+
"metadata": {},
|
| 8 |
+
"outputs": [],
|
| 9 |
+
"source": [
|
| 10 |
+
"import torch\n",
|
| 11 |
+
"import torch.functional as F\n",
|
| 12 |
+
"import torch.nn as nn\n",
|
| 13 |
+
"import yaml\n",
|
| 14 |
+
"from easydict import EasyDict\n",
|
| 15 |
+
"from torchinfo import summary"
|
| 16 |
+
]
|
| 17 |
+
},
|
| 18 |
+
{
|
| 19 |
+
"cell_type": "code",
|
| 20 |
+
"execution_count": 2,
|
| 21 |
+
"id": "f8cff897-df8f-4e6d-893b-321805699e1b",
|
| 22 |
+
"metadata": {},
|
| 23 |
+
"outputs": [],
|
| 24 |
+
"source": [
|
| 25 |
+
"config_path = \"./config/paper_config.yml\"\n",
|
| 26 |
+
"\n",
|
| 27 |
+
"with open(config_path, \"r\") as file:\n",
|
| 28 |
+
" yaml_data = yaml.safe_load(file)\n",
|
| 29 |
+
"\n",
|
| 30 |
+
"config = EasyDict(yaml_data)"
|
| 31 |
+
]
|
| 32 |
+
},
|
| 33 |
+
{
|
| 34 |
+
"cell_type": "markdown",
|
| 35 |
+
"id": "ca66846e-d2b4-4dd2-83eb-eee746c26c74",
|
| 36 |
+
"metadata": {},
|
| 37 |
+
"source": [
|
| 38 |
+
"# Encoder "
|
| 39 |
+
]
|
| 40 |
+
},
|
| 41 |
+
{
|
| 42 |
+
"cell_type": "code",
|
| 43 |
+
"execution_count": 3,
|
| 44 |
+
"id": "975a6f86-68ff-4fda-b7d8-acf453addade",
|
| 45 |
+
"metadata": {},
|
| 46 |
+
"outputs": [
|
| 47 |
+
{
|
| 48 |
+
"data": {
|
| 49 |
+
"text/plain": [
|
| 50 |
+
"==========================================================================================\n",
|
| 51 |
+
"Layer (type:depth-idx) Output Shape Param #\n",
|
| 52 |
+
"==========================================================================================\n",
|
| 53 |
+
"EncoderLayer [64, 568, 568] --\n",
|
| 54 |
+
"├─Sequential: 1-1 [64, 568, 568] --\n",
|
| 55 |
+
"│ └─Sequential: 2-1 [64, 570, 570] --\n",
|
| 56 |
+
"│ │ └─Conv2d: 3-1 [64, 570, 570] 640\n",
|
| 57 |
+
"│ │ └─ReLU: 3-2 [64, 570, 570] --\n",
|
| 58 |
+
"│ └─Sequential: 2-2 [64, 568, 568] --\n",
|
| 59 |
+
"│ │ └─Conv2d: 3-3 [64, 568, 568] 36,928\n",
|
| 60 |
+
"│ │ └─ReLU: 3-4 [64, 568, 568] --\n",
|
| 61 |
+
"==========================================================================================\n",
|
| 62 |
+
"Total params: 37,568\n",
|
| 63 |
+
"Trainable params: 37,568\n",
|
| 64 |
+
"Non-trainable params: 0\n",
|
| 65 |
+
"Total mult-adds (G): 1.37\n",
|
| 66 |
+
"==========================================================================================\n",
|
| 67 |
+
"Input size (MB): 1.31\n",
|
| 68 |
+
"Forward/backward pass size (MB): 331.53\n",
|
| 69 |
+
"Params size (MB): 0.15\n",
|
| 70 |
+
"Estimated Total Size (MB): 332.99\n",
|
| 71 |
+
"=========================================================================================="
|
| 72 |
+
]
|
| 73 |
+
},
|
| 74 |
+
"execution_count": 3,
|
| 75 |
+
"metadata": {},
|
| 76 |
+
"output_type": "execute_result"
|
| 77 |
+
}
|
| 78 |
+
],
|
| 79 |
+
"source": [
|
| 80 |
+
"\"\"\"\n",
|
| 81 |
+
"downsampling blocks \n",
|
| 82 |
+
"(first half of the 'U' in UNet) \n",
|
| 83 |
+
"[ENCODER]\n",
|
| 84 |
+
"\"\"\"\n",
|
| 85 |
+
"\n",
|
| 86 |
+
"\n",
|
| 87 |
+
"class EncoderLayer(nn.Module):\n",
|
| 88 |
+
" def __init__(\n",
|
| 89 |
+
" self,\n",
|
| 90 |
+
" in_channels=1,\n",
|
| 91 |
+
" out_channels=64,\n",
|
| 92 |
+
" n_layers=2,\n",
|
| 93 |
+
" all_padding=False,\n",
|
| 94 |
+
" maxpool=True,\n",
|
| 95 |
+
" ):\n",
|
| 96 |
+
" super(EncoderLayer, self).__init__()\n",
|
| 97 |
+
"\n",
|
| 98 |
+
" f_in_channel = lambda layer: in_channels if layer == 0 else out_channels\n",
|
| 99 |
+
" f_padding = lambda layer: 1 if layer >= 2 or all_padding else 0\n",
|
| 100 |
+
"\n",
|
| 101 |
+
" self.layer = nn.Sequential(\n",
|
| 102 |
+
" *[\n",
|
| 103 |
+
" self._conv_relu_layer(\n",
|
| 104 |
+
" in_channels=f_in_channel(i),\n",
|
| 105 |
+
" out_channels=out_channels,\n",
|
| 106 |
+
" padding=f_padding(i),\n",
|
| 107 |
+
" )\n",
|
| 108 |
+
" for i in range(n_layers)\n",
|
| 109 |
+
" ]\n",
|
| 110 |
+
" )\n",
|
| 111 |
+
" self.maxpool = maxpool\n",
|
| 112 |
+
"\n",
|
| 113 |
+
" def _conv_relu_layer(self, in_channels, out_channels, padding=0):\n",
|
| 114 |
+
" return nn.Sequential(\n",
|
| 115 |
+
" nn.Conv2d(\n",
|
| 116 |
+
" in_channels=in_channels,\n",
|
| 117 |
+
" out_channels=out_channels,\n",
|
| 118 |
+
" kernel_size=3,\n",
|
| 119 |
+
" padding=padding,\n",
|
| 120 |
+
" ),\n",
|
| 121 |
+
" nn.ReLU(),\n",
|
| 122 |
+
" )\n",
|
| 123 |
+
"\n",
|
| 124 |
+
" def forward(self, x):\n",
|
| 125 |
+
" return self.layer(x)\n",
|
| 126 |
+
"\n",
|
| 127 |
+
"\n",
|
| 128 |
+
"summary(\n",
|
| 129 |
+
" EncoderLayer(in_channels=1, out_channels=64, n_layers=2, all_padding=False).cuda(),\n",
|
| 130 |
+
" input_size=(1, 572, 572),\n",
|
| 131 |
+
")"
|
| 132 |
+
]
|
| 133 |
+
},
|
| 134 |
+
{
|
| 135 |
+
"cell_type": "code",
|
| 136 |
+
"execution_count": 4,
|
| 137 |
+
"id": "4eb7eedd-6530-44e2-9486-fbd8f39fd0ad",
|
| 138 |
+
"metadata": {},
|
| 139 |
+
"outputs": [
|
| 140 |
+
{
|
| 141 |
+
"data": {
|
| 142 |
+
"text/plain": [
|
| 143 |
+
"==========================================================================================\n",
|
| 144 |
+
"Layer (type:depth-idx) Output Shape Param #\n",
|
| 145 |
+
"==========================================================================================\n",
|
| 146 |
+
"Encoder [1024, 28, 28] --\n",
|
| 147 |
+
"├─ModuleDict: 1-9 -- (recursive)\n",
|
| 148 |
+
"│ └─EncoderLayer: 2-1 [64, 568, 568] --\n",
|
| 149 |
+
"│ │ └─Sequential: 3-1 [64, 568, 568] 37,568\n",
|
| 150 |
+
"├─MaxPool2d: 1-2 [64, 284, 284] --\n",
|
| 151 |
+
"├─ModuleDict: 1-9 -- (recursive)\n",
|
| 152 |
+
"│ └─EncoderLayer: 2-2 [128, 280, 280] --\n",
|
| 153 |
+
"│ │ └─Sequential: 3-2 [128, 280, 280] 221,440\n",
|
| 154 |
+
"├─MaxPool2d: 1-4 [128, 140, 140] --\n",
|
| 155 |
+
"├─ModuleDict: 1-9 -- (recursive)\n",
|
| 156 |
+
"│ └─EncoderLayer: 2-3 [256, 136, 136] --\n",
|
| 157 |
+
"│ │ └─Sequential: 3-3 [256, 136, 136] 885,248\n",
|
| 158 |
+
"├─MaxPool2d: 1-6 [256, 68, 68] --\n",
|
| 159 |
+
"├─ModuleDict: 1-9 -- (recursive)\n",
|
| 160 |
+
"│ └─EncoderLayer: 2-4 [512, 64, 64] --\n",
|
| 161 |
+
"│ │ └─Sequential: 3-4 [512, 64, 64] 3,539,968\n",
|
| 162 |
+
"├─MaxPool2d: 1-8 [512, 32, 32] --\n",
|
| 163 |
+
"├─ModuleDict: 1-9 -- (recursive)\n",
|
| 164 |
+
"│ └─EncoderLayer: 2-5 [512, 28, 28] --\n",
|
| 165 |
+
"│ │ └─Sequential: 3-5 [512, 28, 28] 4,719,616\n",
|
| 166 |
+
"│ └─EncoderLayer: 2-6 [1024, 28, 28] --\n",
|
| 167 |
+
"│ │ └─Sequential: 3-6 [1024, 28, 28] 14,157,824\n",
|
| 168 |
+
"==========================================================================================\n",
|
| 169 |
+
"Total params: 23,561,664\n",
|
| 170 |
+
"Trainable params: 23,561,664\n",
|
| 171 |
+
"Non-trainable params: 0\n",
|
| 172 |
+
"Total mult-adds (G): 633.51\n",
|
| 173 |
+
"==========================================================================================\n",
|
| 174 |
+
"Input size (MB): 1.31\n",
|
| 175 |
+
"Forward/backward pass size (MB): 624.49\n",
|
| 176 |
+
"Params size (MB): 94.25\n",
|
| 177 |
+
"Estimated Total Size (MB): 720.05\n",
|
| 178 |
+
"=========================================================================================="
|
| 179 |
+
]
|
| 180 |
+
},
|
| 181 |
+
"execution_count": 4,
|
| 182 |
+
"metadata": {},
|
| 183 |
+
"output_type": "execute_result"
|
| 184 |
+
}
|
| 185 |
+
],
|
| 186 |
+
"source": [
|
| 187 |
+
"class Encoder(nn.Module):\n",
|
| 188 |
+
" def __init__(self, config):\n",
|
| 189 |
+
" super(Encoder, self).__init__()\n",
|
| 190 |
+
" self.encoder = nn.ModuleDict(\n",
|
| 191 |
+
" {\n",
|
| 192 |
+
" name: EncoderLayer(\n",
|
| 193 |
+
" in_channels=block[\"in_channels\"],\n",
|
| 194 |
+
" out_channels=block[\"out_channels\"],\n",
|
| 195 |
+
" n_layers=block[\"n_layers\"],\n",
|
| 196 |
+
" all_padding=block[\"all_padding\"],\n",
|
| 197 |
+
" maxpool=block[\"maxpool\"],\n",
|
| 198 |
+
" )\n",
|
| 199 |
+
" for name, block in config.items()\n",
|
| 200 |
+
" }\n",
|
| 201 |
+
" )\n",
|
| 202 |
+
" self.maxpool = nn.MaxPool2d(2)\n",
|
| 203 |
+
"\n",
|
| 204 |
+
" def forward(self, x):\n",
|
| 205 |
+
" output = dict()\n",
|
| 206 |
+
"\n",
|
| 207 |
+
" for i, (block_name, block) in enumerate(self.encoder.items()):\n",
|
| 208 |
+
" x = block(x)\n",
|
| 209 |
+
" output[block_name] = x\n",
|
| 210 |
+
"\n",
|
| 211 |
+
" if block.maxpool:\n",
|
| 212 |
+
" x = self.maxpool(x)\n",
|
| 213 |
+
"\n",
|
| 214 |
+
" return x, output\n",
|
| 215 |
+
"\n",
|
| 216 |
+
"\n",
|
| 217 |
+
"summary(\n",
|
| 218 |
+
" Encoder(config.encoder_config).cuda(),\n",
|
| 219 |
+
" input_size=(1, 572, 572),\n",
|
| 220 |
+
")"
|
| 221 |
+
]
|
| 222 |
+
},
|
| 223 |
+
{
|
| 224 |
+
"cell_type": "markdown",
|
| 225 |
+
"id": "a7ad06cb-61a2-4a66-ba58-f29d402a81f2",
|
| 226 |
+
"metadata": {},
|
| 227 |
+
"source": [
|
| 228 |
+
"# Decoder"
|
| 229 |
+
]
|
| 230 |
+
},
|
| 231 |
+
{
|
| 232 |
+
"cell_type": "code",
|
| 233 |
+
"execution_count": 5,
|
| 234 |
+
"id": "735322d0-0dc3-4137-b906-ac7e54c43a79",
|
| 235 |
+
"metadata": {},
|
| 236 |
+
"outputs": [
|
| 237 |
+
{
|
| 238 |
+
"data": {
|
| 239 |
+
"text/plain": [
|
| 240 |
+
"==========================================================================================\n",
|
| 241 |
+
"Layer (type:depth-idx) Output Shape Param #\n",
|
| 242 |
+
"==========================================================================================\n",
|
| 243 |
+
"DecoderLayer [1, 512, 52, 52] --\n",
|
| 244 |
+
"├─ConvTranspose2d: 1-1 [1, 512, 56, 56] 2,097,664\n",
|
| 245 |
+
"├─Sequential: 1-2 [1, 512, 52, 52] --\n",
|
| 246 |
+
"│ ���─Sequential: 2-1 [1, 512, 54, 54] --\n",
|
| 247 |
+
"│ │ └─Conv2d: 3-1 [1, 512, 54, 54] 4,719,104\n",
|
| 248 |
+
"│ │ └─ReLU: 3-2 [1, 512, 54, 54] --\n",
|
| 249 |
+
"│ └─Sequential: 2-2 [1, 512, 52, 52] --\n",
|
| 250 |
+
"│ │ └─Conv2d: 3-3 [1, 512, 52, 52] 2,359,808\n",
|
| 251 |
+
"│ │ └─ReLU: 3-4 [1, 512, 52, 52] --\n",
|
| 252 |
+
"==========================================================================================\n",
|
| 253 |
+
"Total params: 9,176,576\n",
|
| 254 |
+
"Trainable params: 9,176,576\n",
|
| 255 |
+
"Non-trainable params: 0\n",
|
| 256 |
+
"Total mult-adds (G): 26.72\n",
|
| 257 |
+
"==========================================================================================\n",
|
| 258 |
+
"Input size (MB): 11.60\n",
|
| 259 |
+
"Forward/backward pass size (MB): 35.86\n",
|
| 260 |
+
"Params size (MB): 36.71\n",
|
| 261 |
+
"Estimated Total Size (MB): 84.17\n",
|
| 262 |
+
"=========================================================================================="
|
| 263 |
+
]
|
| 264 |
+
},
|
| 265 |
+
"execution_count": 5,
|
| 266 |
+
"metadata": {},
|
| 267 |
+
"output_type": "execute_result"
|
| 268 |
+
}
|
| 269 |
+
],
|
| 270 |
+
"source": [
|
| 271 |
+
"class DecoderLayer(nn.Module):\n",
|
| 272 |
+
" def __init__(\n",
|
| 273 |
+
" self, in_channels, out_channels, kernel_size=2, stride=2, padding=[0, 0]\n",
|
| 274 |
+
" ):\n",
|
| 275 |
+
" super(DecoderLayer, self).__init__()\n",
|
| 276 |
+
" self.up_conv = nn.ConvTranspose2d(\n",
|
| 277 |
+
" in_channels=in_channels,\n",
|
| 278 |
+
" out_channels=in_channels // 2,\n",
|
| 279 |
+
" kernel_size=kernel_size,\n",
|
| 280 |
+
" stride=stride,\n",
|
| 281 |
+
" padding=padding[0],\n",
|
| 282 |
+
" )\n",
|
| 283 |
+
"\n",
|
| 284 |
+
" self.conv = nn.Sequential(\n",
|
| 285 |
+
" *[\n",
|
| 286 |
+
" self._conv_relu_layer(\n",
|
| 287 |
+
" in_channels=in_channels if i == 0 else out_channels,\n",
|
| 288 |
+
" out_channels=out_channels,\n",
|
| 289 |
+
" padding=padding[1],\n",
|
| 290 |
+
" )\n",
|
| 291 |
+
" for i in range(2)\n",
|
| 292 |
+
" ]\n",
|
| 293 |
+
" )\n",
|
| 294 |
+
"\n",
|
| 295 |
+
" def _conv_relu_layer(self, in_channels, out_channels, padding=0):\n",
|
| 296 |
+
" return nn.Sequential(\n",
|
| 297 |
+
" nn.Conv2d(\n",
|
| 298 |
+
" in_channels=in_channels,\n",
|
| 299 |
+
" out_channels=out_channels,\n",
|
| 300 |
+
" kernel_size=3,\n",
|
| 301 |
+
" padding=padding,\n",
|
| 302 |
+
" ),\n",
|
| 303 |
+
" nn.ReLU(),\n",
|
| 304 |
+
" )\n",
|
| 305 |
+
"\n",
|
| 306 |
+
" @staticmethod\n",
|
| 307 |
+
" def crop_cat(x, encoder_output):\n",
|
| 308 |
+
" delta = (encoder_output.shape[-1] - x.shape[-1]) // 2\n",
|
| 309 |
+
" encoder_output = encoder_output[\n",
|
| 310 |
+
" :, :, delta : delta + x.shape[-1], delta : delta + x.shape[-1]\n",
|
| 311 |
+
" ]\n",
|
| 312 |
+
" return torch.cat((encoder_output, x), dim=1)\n",
|
| 313 |
+
"\n",
|
| 314 |
+
" def forward(self, x, encoder_output):\n",
|
| 315 |
+
" x = self.crop_cat(self.up_conv(x), encoder_output)\n",
|
| 316 |
+
" return self.conv(x)\n",
|
| 317 |
+
"\n",
|
| 318 |
+
"\n",
|
| 319 |
+
"# summary\n",
|
| 320 |
+
"input_data = [torch.rand((1, 1024, 28, 28)), torch.rand((1, 512, 64, 64))]\n",
|
| 321 |
+
"summary(\n",
|
| 322 |
+
" DecoderLayer(in_channels=1024, out_channels=512),\n",
|
| 323 |
+
" input_data=input_data,\n",
|
| 324 |
+
")"
|
| 325 |
+
]
|
| 326 |
+
},
|
| 327 |
+
{
|
| 328 |
+
"cell_type": "code",
|
| 329 |
+
"execution_count": 6,
|
| 330 |
+
"id": "3795e85d-ff83-457c-9c12-af6cc6e2830c",
|
| 331 |
+
"metadata": {},
|
| 332 |
+
"outputs": [
|
| 333 |
+
{
|
| 334 |
+
"data": {
|
| 335 |
+
"text/plain": [
|
| 336 |
+
"==========================================================================================\n",
|
| 337 |
+
"Layer (type:depth-idx) Output Shape Param #\n",
|
| 338 |
+
"==========================================================================================\n",
|
| 339 |
+
"Decoder [1, 64, 388, 388] --\n",
|
| 340 |
+
"├─ModuleDict: 1-1 -- --\n",
|
| 341 |
+
"│ └─DecoderLayer: 2-1 [1, 1024, 28, 28] --\n",
|
| 342 |
+
"│ │ └─ConvTranspose2d: 3-1 [1, 512, 28, 28] 4,719,104\n",
|
| 343 |
+
"│ │ └─Sequential: 3-2 [1, 1024, 28, 28] 18,876,416\n",
|
| 344 |
+
"│ └─DecoderLayer: 2-2 [1, 512, 52, 52] --\n",
|
| 345 |
+
"│ │ └─ConvTranspose2d: 3-3 [1, 512, 56, 56] 2,097,664\n",
|
| 346 |
+
"│ │ └─Sequential: 3-4 [1, 512, 52, 52] 7,078,912\n",
|
| 347 |
+
"│ └─DecoderLayer: 2-3 [1, 256, 100, 100] --\n",
|
| 348 |
+
"│ │ └─ConvTranspose2d: 3-5 [1, 256, 104, 104] 524,544\n",
|
| 349 |
+
"│ │ └─Sequential: 3-6 [1, 256, 100, 100] 1,769,984\n",
|
| 350 |
+
"│ └─DecoderLayer: 2-4 [1, 128, 196, 196] --\n",
|
| 351 |
+
"│ │ └─ConvTranspose2d: 3-7 [1, 128, 200, 200] 131,200\n",
|
| 352 |
+
"│ │ └─Sequential: 3-8 [1, 128, 196, 196] 442,624\n",
|
| 353 |
+
"│ └─DecoderLayer: 2-5 [1, 64, 388, 388] --\n",
|
| 354 |
+
"│ │ └─ConvTranspose2d: 3-9 [1, 64, 392, 392] 32,832\n",
|
| 355 |
+
"│ │ └─Sequential: 3-10 [1, 64, 388, 388] 110,720\n",
|
| 356 |
+
"==========================================================================================\n",
|
| 357 |
+
"Total params: 35,784,000\n",
|
| 358 |
+
"Trainable params: 35,784,000\n",
|
| 359 |
+
"Non-trainable params: 0\n",
|
| 360 |
+
"Total mult-adds (G): 113.38\n",
|
| 361 |
+
"==========================================================================================\n",
|
| 362 |
+
"Input size (MB): 158.09\n",
|
| 363 |
+
"Forward/backward pass size (MB): 469.93\n",
|
| 364 |
+
"Params size (MB): 143.14\n",
|
| 365 |
+
"Estimated Total Size (MB): 771.16\n",
|
| 366 |
+
"=========================================================================================="
|
| 367 |
+
]
|
| 368 |
+
},
|
| 369 |
+
"execution_count": 6,
|
| 370 |
+
"metadata": {},
|
| 371 |
+
"output_type": "execute_result"
|
| 372 |
+
}
|
| 373 |
+
],
|
| 374 |
+
"source": [
|
| 375 |
+
"class Decoder(nn.Module):\n",
|
| 376 |
+
" def __init__(self, config):\n",
|
| 377 |
+
" super(Decoder, self).__init__()\n",
|
| 378 |
+
" self.decoder = nn.ModuleDict(\n",
|
| 379 |
+
" {\n",
|
| 380 |
+
" name: DecoderLayer(\n",
|
| 381 |
+
" in_channels=block[\"in_channels\"],\n",
|
| 382 |
+
" out_channels=block[\"out_channels\"],\n",
|
| 383 |
+
" kernel_size=block[\"kernel_size\"],\n",
|
| 384 |
+
" stride=block[\"stride\"],\n",
|
| 385 |
+
" padding=block[\"padding\"],\n",
|
| 386 |
+
" )\n",
|
| 387 |
+
" for name, block in config.items()\n",
|
| 388 |
+
" }\n",
|
| 389 |
+
" )\n",
|
| 390 |
+
"\n",
|
| 391 |
+
" def forward(self, x, encoder_output):\n",
|
| 392 |
+
" for name, block in self.decoder.items():\n",
|
| 393 |
+
" x = block(x, encoder_output[name])\n",
|
| 394 |
+
" return x\n",
|
| 395 |
+
"\n",
|
| 396 |
+
"\n",
|
| 397 |
+
"# summary\n",
|
| 398 |
+
"encoder_input = torch.rand((1, 1, 572, 572), device=\"cuda\")\n",
|
| 399 |
+
"x, encoder_output = Encoder(config.encoder_config).cuda()(encoder_input)\n",
|
| 400 |
+
"\n",
|
| 401 |
+
"input_data = [x, encoder_output]\n",
|
| 402 |
+
"summary(\n",
|
| 403 |
+
" Decoder(config.decoder_config).cuda(),\n",
|
| 404 |
+
" input_data=input_data,\n",
|
| 405 |
+
")"
|
| 406 |
+
]
|
| 407 |
+
},
|
| 408 |
+
{
|
| 409 |
+
"cell_type": "markdown",
|
| 410 |
+
"id": "6cd06e02-abd4-4537-8bce-5a15c4ad4f85",
|
| 411 |
+
"metadata": {},
|
| 412 |
+
"source": [
|
| 413 |
+
"# UNet"
|
| 414 |
+
]
|
| 415 |
+
},
|
| 416 |
+
{
|
| 417 |
+
"cell_type": "code",
|
| 418 |
+
"execution_count": 7,
|
| 419 |
+
"id": "24fd0355-3603-4a55-b827-068eda70b78a",
|
| 420 |
+
"metadata": {},
|
| 421 |
+
"outputs": [
|
| 422 |
+
{
|
| 423 |
+
"data": {
|
| 424 |
+
"text/plain": [
|
| 425 |
+
"===============================================================================================\n",
|
| 426 |
+
"Layer (type:depth-idx) Output Shape Param #\n",
|
| 427 |
+
"===============================================================================================\n",
|
| 428 |
+
"UNet [1, 2, 388, 388] --\n",
|
| 429 |
+
"├─Encoder: 1-1 [1, 1024, 28, 28] --\n",
|
| 430 |
+
"│ └─ModuleDict: 2-9 -- (recursive)\n",
|
| 431 |
+
"│ │ └─EncoderLayer: 3-1 [1, 64, 568, 568] 37,568\n",
|
| 432 |
+
"│ └─MaxPool2d: 2-2 [1, 64, 284, 284] --\n",
|
| 433 |
+
"│ └─ModuleDict: 2-9 -- (recursive)\n",
|
| 434 |
+
"│ │ └─EncoderLayer: 3-2 [1, 128, 280, 280] 221,440\n",
|
| 435 |
+
"│ └─MaxPool2d: 2-4 [1, 128, 140, 140] --\n",
|
| 436 |
+
"│ └─ModuleDict: 2-9 -- (recursive)\n",
|
| 437 |
+
"│ │ └─EncoderLayer: 3-3 [1, 256, 136, 136] 885,248\n",
|
| 438 |
+
"│ └─MaxPool2d: 2-6 [1, 256, 68, 68] --\n",
|
| 439 |
+
"│ └─ModuleDict: 2-9 -- (recursive)\n",
|
| 440 |
+
"│ │ └─EncoderLayer: 3-4 [1, 512, 64, 64] 3,539,968\n",
|
| 441 |
+
"│ └─MaxPool2d: 2-8 [1, 512, 32, 32] --\n",
|
| 442 |
+
"│ └─ModuleDict: 2-9 -- (recursive)\n",
|
| 443 |
+
"│ │ └─EncoderLayer: 3-5 [1, 512, 28, 28] 4,719,616\n",
|
| 444 |
+
"│ │ └─EncoderLayer: 3-6 [1, 1024, 28, 28] 14,157,824\n",
|
| 445 |
+
"├─Decoder: 1-2 [1, 64, 388, 388] --\n",
|
| 446 |
+
"│ └─ModuleDict: 2-10 -- --\n",
|
| 447 |
+
"│ │ └─DecoderLayer: 3-7 [1, 1024, 28, 28] 23,595,520\n",
|
| 448 |
+
"│ │ └─DecoderLayer: 3-8 [1, 512, 52, 52] 9,176,576\n",
|
| 449 |
+
"│ │ └─DecoderLayer: 3-9 [1, 256, 100, 100] 2,294,528\n",
|
| 450 |
+
"│ │ └─DecoderLayer: 3-10 [1, 128, 196, 196] 573,824\n",
|
| 451 |
+
"│ │ └─DecoderLayer: 3-11 [1, 64, 388, 388] 143,552\n",
|
| 452 |
+
"├─Conv2d: 1-3 [1, 2, 388, 388] 130\n",
|
| 453 |
+
"===============================================================================================\n",
|
| 454 |
+
"Total params: 59,345,794\n",
|
| 455 |
+
"Trainable params: 59,345,794\n",
|
| 456 |
+
"Non-trainable params: 0\n",
|
| 457 |
+
"Total mult-adds (G): 189.38\n",
|
| 458 |
+
"===============================================================================================\n",
|
| 459 |
+
"Input size (MB): 1.31\n",
|
| 460 |
+
"Forward/backward pass size (MB): 1096.83\n",
|
| 461 |
+
"Params size (MB): 237.38\n",
|
| 462 |
+
"Estimated Total Size (MB): 1335.52\n",
|
| 463 |
+
"==============================================================================================="
|
| 464 |
+
]
|
| 465 |
+
},
|
| 466 |
+
"execution_count": 7,
|
| 467 |
+
"metadata": {},
|
| 468 |
+
"output_type": "execute_result"
|
| 469 |
+
}
|
| 470 |
+
],
|
| 471 |
+
"source": [
|
| 472 |
+
"class UNet(nn.Module):\n",
|
| 473 |
+
" def __init__(self, encoder_config, decoder_config, nclasses):\n",
|
| 474 |
+
" super(UNet, self).__init__()\n",
|
| 475 |
+
" self.encoder = Encoder(config=encoder_config)\n",
|
| 476 |
+
" self.decoder = Decoder(config=decoder_config)\n",
|
| 477 |
+
"\n",
|
| 478 |
+
" self.output = nn.Conv2d(\n",
|
| 479 |
+
" in_channels=decoder_config[\"block1\"][\"out_channels\"],\n",
|
| 480 |
+
" out_channels=nclasses,\n",
|
| 481 |
+
" kernel_size=1,\n",
|
| 482 |
+
" )\n",
|
| 483 |
+
"\n",
|
| 484 |
+
" def forward(self, x):\n",
|
| 485 |
+
" x, encoder_step_output = self.encoder(x)\n",
|
| 486 |
+
" x = self.decoder(x, encoder_step_output)\n",
|
| 487 |
+
" return self.output(x)\n",
|
| 488 |
+
"\n",
|
| 489 |
+
"\n",
|
| 490 |
+
"summary(\n",
|
| 491 |
+
" UNet(\n",
|
| 492 |
+
" config[\"encoder_config\"], config[\"decoder_config\"], nclasses=config[\"nclasses\"]\n",
|
| 493 |
+
" ),\n",
|
| 494 |
+
" input_data=torch.rand((1, 1, 572, 572)),\n",
|
| 495 |
+
")"
|
| 496 |
+
]
|
| 497 |
+
},
|
| 498 |
+
{
|
| 499 |
+
"cell_type": "code",
|
| 500 |
+
"execution_count": 13,
|
| 501 |
+
"id": "550824e4-2151-4c0b-8a12-383fa092b4ac",
|
| 502 |
+
"metadata": {},
|
| 503 |
+
"outputs": [],
|
| 504 |
+
"source": [
|
| 505 |
+
"# # if config is a dict\n",
|
| 506 |
+
"# with open('custom_config.yml', 'w') as outfile:\n",
|
| 507 |
+
"# yaml.dump(config, outfile, sort_keys=False)"
|
| 508 |
+
]
|
| 509 |
+
}
|
| 510 |
+
],
|
| 511 |
+
"metadata": {
|
| 512 |
+
"kernelspec": {
|
| 513 |
+
"display_name": "Python 3 (ipykernel)",
|
| 514 |
+
"language": "python",
|
| 515 |
+
"name": "python3"
|
| 516 |
+
},
|
| 517 |
+
"language_info": {
|
| 518 |
+
"codemirror_mode": {
|
| 519 |
+
"name": "ipython",
|
| 520 |
+
"version": 3
|
| 521 |
+
},
|
| 522 |
+
"file_extension": ".py",
|
| 523 |
+
"mimetype": "text/x-python",
|
| 524 |
+
"name": "python",
|
| 525 |
+
"nbconvert_exporter": "python",
|
| 526 |
+
"pygments_lexer": "ipython3",
|
| 527 |
+
"version": "3.8.10"
|
| 528 |
+
}
|
| 529 |
+
},
|
| 530 |
+
"nbformat": 4,
|
| 531 |
+
"nbformat_minor": 5
|
| 532 |
+
}
|
src/models/unet/resunet.py
ADDED
|
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch.nn as nn
|
| 2 |
+
from .encoder import ResnetEncoder as Encoder
|
| 3 |
+
from .decoder import CustomDecoder as Decoder
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
class UNet(nn.Module):
|
| 7 |
+
def __init__(self, decoder_config, nclasses, input_shape=(224, 224)):
|
| 8 |
+
super(UNet, self).__init__()
|
| 9 |
+
self.encoder = Encoder()
|
| 10 |
+
self.decoder = Decoder(config=decoder_config)
|
| 11 |
+
|
| 12 |
+
self.output = nn.Sequential(
|
| 13 |
+
nn.Conv2d(
|
| 14 |
+
in_channels=decoder_config["block1"]["out_channels"],
|
| 15 |
+
out_channels=nclasses,
|
| 16 |
+
kernel_size=1,
|
| 17 |
+
),
|
| 18 |
+
nn.UpsamplingBilinear2d(size=input_shape),
|
| 19 |
+
)
|
| 20 |
+
|
| 21 |
+
def forward(self, x):
|
| 22 |
+
x, encoder_step_output = self.encoder(x)
|
| 23 |
+
x = self.decoder(x, encoder_step_output)
|
| 24 |
+
x = self.output(x)
|
| 25 |
+
return x
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
if __name__ == "__main__":
|
| 29 |
+
import torch
|
| 30 |
+
import yaml
|
| 31 |
+
from easydict import EasyDict
|
| 32 |
+
from torchinfo import summary
|
| 33 |
+
|
| 34 |
+
# load config
|
| 35 |
+
config_path = "./config/resnet_config.yml"
|
| 36 |
+
|
| 37 |
+
with open(config_path, "r") as file:
|
| 38 |
+
yaml_data = yaml.safe_load(file)
|
| 39 |
+
|
| 40 |
+
config = EasyDict(yaml_data)
|
| 41 |
+
|
| 42 |
+
# input shape
|
| 43 |
+
input_shape = (224, 224)
|
| 44 |
+
|
| 45 |
+
# device
|
| 46 |
+
use_cuda = torch.cuda.is_available()
|
| 47 |
+
device = torch.device("cuda" if use_cuda else "cpu")
|
| 48 |
+
|
| 49 |
+
# model definition
|
| 50 |
+
model = UNet(
|
| 51 |
+
decoder_config=config["decoder_config"], nclasses=1, input_shape=input_shape
|
| 52 |
+
).to(device)
|
| 53 |
+
|
| 54 |
+
summary(
|
| 55 |
+
model,
|
| 56 |
+
input_data=torch.rand((1, 3, input_shape[0], input_shape[1])),
|
| 57 |
+
device=device,
|
| 58 |
+
)
|
| 59 |
+
|
| 60 |
+
# load weights (if any)
|
| 61 |
+
model_path = None
|
| 62 |
+
|
| 63 |
+
if model_path is not None:
|
| 64 |
+
checkpoint = torch.load(model_path, map_location=device)
|
| 65 |
+
model.decoder.load_state_dict(checkpoint["decoder_state_dict"], strict=False)
|
| 66 |
+
model.output.load_state_dict(checkpoint["output_state_dict"], strict=False)
|
src/run/unet/example/binary_segmentation_resunet.ipynb
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
src/run/unet/inference.py
ADDED
|
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
|
| 3 |
+
import albumentations as A
|
| 4 |
+
import matplotlib.pyplot as plt
|
| 5 |
+
import numpy as np
|
| 6 |
+
import torch
|
| 7 |
+
import torch.nn as nn
|
| 8 |
+
import yaml
|
| 9 |
+
from albumentations.pytorch import ToTensorV2
|
| 10 |
+
from easydict import EasyDict
|
| 11 |
+
from PIL import Image
|
| 12 |
+
|
| 13 |
+
from src.models.unet.resunet import UNet as Model
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
class ResUnetInfer:
|
| 17 |
+
def __init__(self, model_path, config_path):
|
| 18 |
+
use_cuda = torch.cuda.is_available()
|
| 19 |
+
self.device = torch.device("cuda" if use_cuda else "cpu")
|
| 20 |
+
|
| 21 |
+
self.config = self.load_config(config_path=config_path)
|
| 22 |
+
self.model = self.load_model(model_path=model_path)
|
| 23 |
+
|
| 24 |
+
self.transform = A.Compose(
|
| 25 |
+
[
|
| 26 |
+
A.Resize(self.config.input_size[0], self.config.input_size[1]),
|
| 27 |
+
A.Normalize(
|
| 28 |
+
mean=self.config.mean,
|
| 29 |
+
std=self.config.std,
|
| 30 |
+
max_pixel_value=255,
|
| 31 |
+
),
|
| 32 |
+
ToTensorV2(),
|
| 33 |
+
]
|
| 34 |
+
)
|
| 35 |
+
|
| 36 |
+
def load_model(self, model_path):
|
| 37 |
+
model = Model(
|
| 38 |
+
decoder_config=self.config.decoder_config, nclasses=self.config.nclasses
|
| 39 |
+
).to(self.device)
|
| 40 |
+
|
| 41 |
+
if os.path.isfile(model_path):
|
| 42 |
+
checkpoint = torch.load(model_path, map_location=self.device)
|
| 43 |
+
model.decoder.load_state_dict(
|
| 44 |
+
checkpoint["decoder_state_dict"], strict=False
|
| 45 |
+
)
|
| 46 |
+
model.output.load_state_dict(checkpoint["output_state_dict"], strict=False)
|
| 47 |
+
|
| 48 |
+
return model
|
| 49 |
+
|
| 50 |
+
def load_config(self, config_path):
|
| 51 |
+
with open(config_path, "r") as file:
|
| 52 |
+
yaml_data = yaml.safe_load(file)
|
| 53 |
+
|
| 54 |
+
return EasyDict(yaml_data)
|
| 55 |
+
|
| 56 |
+
def infer(self, image, image_weight=0.01):
|
| 57 |
+
self.model.eval()
|
| 58 |
+
input_tensor = self.transform(image=image)["image"].unsqueeze(0)
|
| 59 |
+
|
| 60 |
+
# get mask
|
| 61 |
+
with torch.no_grad():
|
| 62 |
+
"""
|
| 63 |
+
output_tensor = [batch, 1, 224, 224]
|
| 64 |
+
batch = 1
|
| 65 |
+
"""
|
| 66 |
+
output_tensor = self.model(input_tensor.to(self.device))
|
| 67 |
+
|
| 68 |
+
mask = torch.sigmoid(output_tensor)
|
| 69 |
+
mask = nn.UpsamplingBilinear2d(size=(image.shape[0], image.shape[1]))(mask)
|
| 70 |
+
mask = mask.squeeze(0)
|
| 71 |
+
|
| 72 |
+
# add zeros for green and blue channels
|
| 73 |
+
# our mask will be red in colour
|
| 74 |
+
zero_channels = torch.zeros((2, image.shape[0], image.shape[1]), device=self.device)
|
| 75 |
+
mask = torch.cat([mask, zero_channels], dim=0)
|
| 76 |
+
mask = mask.permute(1,2,0).cpu().numpy()
|
| 77 |
+
mask = np.uint8(255 * mask)
|
| 78 |
+
|
| 79 |
+
# overlap image and mask
|
| 80 |
+
mask = (1 - image_weight) * mask + image_weight * image
|
| 81 |
+
mask = mask / np.max(mask)
|
| 82 |
+
return np.uint8(255 * mask)
|
| 83 |
+
|
| 84 |
+
@staticmethod
|
| 85 |
+
def load_image_as_array(image_path):
|
| 86 |
+
# Load a PIL image
|
| 87 |
+
pil_image = Image.open(image_path)
|
| 88 |
+
|
| 89 |
+
# Convert PIL image to NumPy array
|
| 90 |
+
return np.array(pil_image.convert("RGB"))
|
| 91 |
+
|
| 92 |
+
@staticmethod
|
| 93 |
+
def plot_array(array: np.array, figsize=(10, 10)):
|
| 94 |
+
plt.figure(figsize=figsize)
|
| 95 |
+
plt.imshow(array)
|
| 96 |
+
plt.show()
|
| 97 |
+
|
| 98 |
+
@staticmethod
|
| 99 |
+
def save_numpy_as_image(numpy_array, image_path):
|
| 100 |
+
"""
|
| 101 |
+
Saves a NumPy array as an image.
|
| 102 |
+
Args:
|
| 103 |
+
numpy_array (numpy.ndarray): The NumPy array to be saved as an image.
|
| 104 |
+
image_path (str): The path where the image will be saved.
|
| 105 |
+
"""
|
| 106 |
+
# Convert the NumPy array to a PIL image
|
| 107 |
+
image = Image.fromarray(numpy_array)
|
| 108 |
+
|
| 109 |
+
# Save the PIL image to the specified path
|
| 110 |
+
image.save(image_path)
|
| 111 |
+
|
src/unet/__init__.py
ADDED
|
File without changes
|
src/unet/config/carvana_config.yml
ADDED
|
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Input (1, 512, 512)
|
| 2 |
+
# Output (64, 512, 512)
|
| 3 |
+
decoder_config:
|
| 4 |
+
block5: # (1024, 32, 32)
|
| 5 |
+
in_channels: 1024
|
| 6 |
+
kernel_size: 3
|
| 7 |
+
out_channels: 1024
|
| 8 |
+
padding:
|
| 9 |
+
- 1
|
| 10 |
+
- 1
|
| 11 |
+
stride: 1 # (1024, 32, 32)
|
| 12 |
+
block4: # (1024, 32, 32)
|
| 13 |
+
in_channels: 1024
|
| 14 |
+
kernel_size: 2
|
| 15 |
+
out_channels: 512
|
| 16 |
+
padding:
|
| 17 |
+
- 0
|
| 18 |
+
- 1
|
| 19 |
+
stride: 2 # (512, 64, 64)
|
| 20 |
+
block3: # (512, 64, 64)
|
| 21 |
+
in_channels: 512
|
| 22 |
+
kernel_size: 2
|
| 23 |
+
out_channels: 256
|
| 24 |
+
padding:
|
| 25 |
+
- 0
|
| 26 |
+
- 1
|
| 27 |
+
stride: 2 # (256, 128, 128)
|
| 28 |
+
block2: # (256, 128, 128)
|
| 29 |
+
in_channels: 256
|
| 30 |
+
kernel_size: 2
|
| 31 |
+
out_channels: 128
|
| 32 |
+
padding:
|
| 33 |
+
- 0
|
| 34 |
+
- 1
|
| 35 |
+
stride: 2 # (128, 256, 256)
|
| 36 |
+
block1: # (128, 256, 256)
|
| 37 |
+
in_channels: 128
|
| 38 |
+
kernel_size: 2
|
| 39 |
+
out_channels: 64
|
| 40 |
+
padding:
|
| 41 |
+
- 0
|
| 42 |
+
- 1
|
| 43 |
+
stride: 2 # (64, 512, 512)
|
| 44 |
+
encoder_config:
|
| 45 |
+
block1: # (1, 512, 512)
|
| 46 |
+
all_padding: true
|
| 47 |
+
in_channels: 1
|
| 48 |
+
maxpool: true
|
| 49 |
+
n_layers: 2
|
| 50 |
+
out_channels: 64 # (64, 256, 256)
|
| 51 |
+
block2: # (64, 256, 256)
|
| 52 |
+
all_padding: true
|
| 53 |
+
in_channels: 64
|
| 54 |
+
maxpool: true
|
| 55 |
+
n_layers: 2
|
| 56 |
+
out_channels: 128 # (128, 128, 128)
|
| 57 |
+
block3: # (128, 128, 128)
|
| 58 |
+
all_padding: true
|
| 59 |
+
in_channels: 128
|
| 60 |
+
maxpool: true
|
| 61 |
+
n_layers: 2
|
| 62 |
+
out_channels: 256 # (256, 64, 64)
|
| 63 |
+
block4: # (256, 64, 64)
|
| 64 |
+
all_padding: true
|
| 65 |
+
in_channels: 256
|
| 66 |
+
maxpool: true
|
| 67 |
+
n_layers: 2
|
| 68 |
+
out_channels: 512 # (512, 32, 32)
|
| 69 |
+
block5: # (512, 32, 32)
|
| 70 |
+
all_padding: true
|
| 71 |
+
in_channels: 512
|
| 72 |
+
maxpool: false
|
| 73 |
+
n_layers: 2
|
| 74 |
+
out_channels: 512 # (512, 32, 32)
|
| 75 |
+
block6: # (512, 32, 32)
|
| 76 |
+
all_padding: true
|
| 77 |
+
in_channels: 512
|
| 78 |
+
maxpool: false
|
| 79 |
+
n_layers: 2
|
| 80 |
+
out_channels: 1024 # (1024, 32, 32)
|
| 81 |
+
nclasses: 2
|
src/unet/config/paper_config.yml
ADDED
|
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Original UNet Paper Configuration
|
| 2 |
+
# Input shape [1, 572, 572]
|
| 3 |
+
# Output shape [64, 388, 388]
|
| 4 |
+
decoder_config:
|
| 5 |
+
block4: # [1024, 28, 28]
|
| 6 |
+
in_channels: 1024
|
| 7 |
+
kernel_size: 2
|
| 8 |
+
out_channels: 512
|
| 9 |
+
padding: [0, 0]
|
| 10 |
+
stride: 2 # [512, 52, 52]
|
| 11 |
+
block3: # [512, 52, 52]
|
| 12 |
+
in_channels: 512
|
| 13 |
+
kernel_size: 2
|
| 14 |
+
out_channels: 256
|
| 15 |
+
padding: [0, 0]
|
| 16 |
+
stride: 2 # [256, 100, 100]
|
| 17 |
+
block2: # [256, 100, 100]
|
| 18 |
+
in_channels: 256
|
| 19 |
+
kernel_size: 2
|
| 20 |
+
out_channels: 128
|
| 21 |
+
padding: [0, 0]
|
| 22 |
+
stride: 2 # [128, 196, 196]
|
| 23 |
+
block1: # [128, 196, 196]
|
| 24 |
+
in_channels: 128
|
| 25 |
+
kernel_size: 2
|
| 26 |
+
out_channels: 64
|
| 27 |
+
padding: [0, 0]
|
| 28 |
+
stride: 2 # [64, 388, 388]
|
| 29 |
+
encoder_config:
|
| 30 |
+
block1: # [1, 572, 572]
|
| 31 |
+
all_padding: false
|
| 32 |
+
in_channels: 1
|
| 33 |
+
maxpool: true
|
| 34 |
+
n_layers: 2
|
| 35 |
+
out_channels: 64 # [64, 568/2, 568/2] = [64, 284, 284]
|
| 36 |
+
block2: # [64, 568/2, 568/2] = [64, 284, 284]
|
| 37 |
+
all_padding: false
|
| 38 |
+
in_channels: 64
|
| 39 |
+
maxpool: true
|
| 40 |
+
n_layers: 2
|
| 41 |
+
out_channels: 128 # [128, 280/2, 280/2] = [128, 140, 140]
|
| 42 |
+
block3: # [128, 280/2, 280/2] = [128, 140, 140]
|
| 43 |
+
all_padding: false
|
| 44 |
+
in_channels: 128
|
| 45 |
+
maxpool: true
|
| 46 |
+
n_layers: 2
|
| 47 |
+
out_channels: 256 # [256, 136/2, 136/2] = [256, 68, 68]
|
| 48 |
+
block4: # [256, 136/2, 136/2] = [256, 68, 68]
|
| 49 |
+
all_padding: false
|
| 50 |
+
in_channels: 256
|
| 51 |
+
maxpool: true
|
| 52 |
+
n_layers: 2
|
| 53 |
+
out_channels: 512 # [512, 64/2, 64/2] = [512, 32, 32]
|
| 54 |
+
block5: # [512, 64/2, 64/2] = [512, 32, 32]
|
| 55 |
+
all_padding: false
|
| 56 |
+
in_channels: 512
|
| 57 |
+
maxpool: false
|
| 58 |
+
n_layers: 2
|
| 59 |
+
out_channels: 1024 # [1024, 28, 28]
|
| 60 |
+
nclasses: 2
|
src/unet/model.py
ADDED
|
@@ -0,0 +1,175 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
"""
|
| 6 |
+
downsampling blocks
|
| 7 |
+
(first half of the 'U' in UNet)
|
| 8 |
+
[ENCODER]
|
| 9 |
+
"""
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
class EncoderLayer(nn.Module):
|
| 13 |
+
def __init__(
|
| 14 |
+
self,
|
| 15 |
+
in_channels=1,
|
| 16 |
+
out_channels=64,
|
| 17 |
+
n_layers=2,
|
| 18 |
+
all_padding=False,
|
| 19 |
+
maxpool=True,
|
| 20 |
+
):
|
| 21 |
+
super(EncoderLayer, self).__init__()
|
| 22 |
+
|
| 23 |
+
f_in_channel = lambda layer: in_channels if layer == 0 else out_channels
|
| 24 |
+
f_padding = lambda layer: 1 if layer >= 2 or all_padding else 0
|
| 25 |
+
|
| 26 |
+
self.layer = nn.Sequential(
|
| 27 |
+
*[
|
| 28 |
+
self._conv_relu_layer(
|
| 29 |
+
in_channels=f_in_channel(i),
|
| 30 |
+
out_channels=out_channels,
|
| 31 |
+
padding=f_padding(i),
|
| 32 |
+
)
|
| 33 |
+
for i in range(n_layers)
|
| 34 |
+
]
|
| 35 |
+
)
|
| 36 |
+
self.maxpool = maxpool
|
| 37 |
+
|
| 38 |
+
def _conv_relu_layer(self, in_channels, out_channels, padding=0):
|
| 39 |
+
return nn.Sequential(
|
| 40 |
+
nn.Conv2d(
|
| 41 |
+
in_channels=in_channels,
|
| 42 |
+
out_channels=out_channels,
|
| 43 |
+
kernel_size=3,
|
| 44 |
+
padding=padding,
|
| 45 |
+
),
|
| 46 |
+
nn.ReLU(),
|
| 47 |
+
)
|
| 48 |
+
|
| 49 |
+
def forward(self, x):
|
| 50 |
+
return self.layer(x)
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
class Encoder(nn.Module):
|
| 54 |
+
def __init__(self, config):
|
| 55 |
+
super(Encoder, self).__init__()
|
| 56 |
+
self.encoder = nn.ModuleDict(
|
| 57 |
+
{
|
| 58 |
+
name: EncoderLayer(
|
| 59 |
+
in_channels=block["in_channels"],
|
| 60 |
+
out_channels=block["out_channels"],
|
| 61 |
+
n_layers=block["n_layers"],
|
| 62 |
+
all_padding=block["all_padding"],
|
| 63 |
+
maxpool=block["maxpool"],
|
| 64 |
+
)
|
| 65 |
+
for name, block in config.items()
|
| 66 |
+
}
|
| 67 |
+
)
|
| 68 |
+
self.maxpool = nn.MaxPool2d(2)
|
| 69 |
+
|
| 70 |
+
def forward(self, x):
|
| 71 |
+
output = dict()
|
| 72 |
+
|
| 73 |
+
for i, (block_name, block) in enumerate(self.encoder.items()):
|
| 74 |
+
x = block(x)
|
| 75 |
+
output[block_name] = x
|
| 76 |
+
|
| 77 |
+
if block.maxpool:
|
| 78 |
+
x = self.maxpool(x)
|
| 79 |
+
|
| 80 |
+
return x, output
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
"""
|
| 84 |
+
upsampling blocks
|
| 85 |
+
(second half of the 'U' in UNet)
|
| 86 |
+
[DECODER]
|
| 87 |
+
"""
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
class DecoderLayer(nn.Module):
|
| 91 |
+
def __init__(
|
| 92 |
+
self, in_channels, out_channels, kernel_size=2, stride=2, padding=[0, 0]
|
| 93 |
+
):
|
| 94 |
+
super(DecoderLayer, self).__init__()
|
| 95 |
+
self.up_conv = nn.ConvTranspose2d(
|
| 96 |
+
in_channels=in_channels,
|
| 97 |
+
out_channels=in_channels // 2,
|
| 98 |
+
kernel_size=kernel_size,
|
| 99 |
+
stride=stride,
|
| 100 |
+
padding=padding[0],
|
| 101 |
+
)
|
| 102 |
+
|
| 103 |
+
self.conv = nn.Sequential(
|
| 104 |
+
*[
|
| 105 |
+
self._conv_relu_layer(
|
| 106 |
+
in_channels=in_channels if i == 0 else out_channels,
|
| 107 |
+
out_channels=out_channels,
|
| 108 |
+
padding=padding[1],
|
| 109 |
+
)
|
| 110 |
+
for i in range(2)
|
| 111 |
+
]
|
| 112 |
+
)
|
| 113 |
+
|
| 114 |
+
def _conv_relu_layer(self, in_channels, out_channels, padding=0):
|
| 115 |
+
return nn.Sequential(
|
| 116 |
+
nn.Conv2d(
|
| 117 |
+
in_channels=in_channels,
|
| 118 |
+
out_channels=out_channels,
|
| 119 |
+
kernel_size=3,
|
| 120 |
+
padding=padding,
|
| 121 |
+
),
|
| 122 |
+
nn.ReLU(),
|
| 123 |
+
)
|
| 124 |
+
|
| 125 |
+
@staticmethod
|
| 126 |
+
def crop_cat(x, encoder_output):
|
| 127 |
+
delta = (encoder_output.shape[-1] - x.shape[-1]) // 2
|
| 128 |
+
encoder_output = encoder_output[
|
| 129 |
+
:, :, delta : delta + x.shape[-1], delta : delta + x.shape[-1]
|
| 130 |
+
]
|
| 131 |
+
return torch.cat((encoder_output, x), dim=1)
|
| 132 |
+
|
| 133 |
+
def forward(self, x, encoder_output):
|
| 134 |
+
x = self.crop_cat(self.up_conv(x), encoder_output)
|
| 135 |
+
return self.conv(x)
|
| 136 |
+
|
| 137 |
+
|
| 138 |
+
class Decoder(nn.Module):
|
| 139 |
+
def __init__(self, config):
|
| 140 |
+
super(Decoder, self).__init__()
|
| 141 |
+
self.decoder = nn.ModuleDict(
|
| 142 |
+
{
|
| 143 |
+
name: DecoderLayer(
|
| 144 |
+
in_channels=block["in_channels"],
|
| 145 |
+
out_channels=block["out_channels"],
|
| 146 |
+
kernel_size=block["kernel_size"],
|
| 147 |
+
stride=block["stride"],
|
| 148 |
+
padding=block["padding"],
|
| 149 |
+
)
|
| 150 |
+
for name, block in config.items()
|
| 151 |
+
}
|
| 152 |
+
)
|
| 153 |
+
|
| 154 |
+
def forward(self, x, encoder_output):
|
| 155 |
+
for name, block in self.decoder.items():
|
| 156 |
+
x = block(x, encoder_output[name])
|
| 157 |
+
return x
|
| 158 |
+
|
| 159 |
+
|
| 160 |
+
class UNet(nn.Module):
|
| 161 |
+
def __init__(self, encoder_config, decoder_config, nclasses):
|
| 162 |
+
super(UNet, self).__init__()
|
| 163 |
+
self.encoder = Encoder(config=encoder_config)
|
| 164 |
+
self.decoder = Decoder(config=decoder_config)
|
| 165 |
+
|
| 166 |
+
self.output = nn.Conv2d(
|
| 167 |
+
in_channels=decoder_config["block1"]["out_channels"],
|
| 168 |
+
out_channels=nclasses,
|
| 169 |
+
kernel_size=1,
|
| 170 |
+
)
|
| 171 |
+
|
| 172 |
+
def forward(self, x):
|
| 173 |
+
x, encoder_step_output = self.encoder(x)
|
| 174 |
+
x = self.decoder(x, encoder_step_output)
|
| 175 |
+
return self.output(x)
|