import streamlit as st class Main_View: def __init__(self, app): self.app = app def show(self): st.markdown("

🧠 Brain Tumor Detection with YOLOv8

", unsafe_allow_html=True) st.subheader("This app helps detect brain tumors from MRI and CT scan images using a powerful YOLOv8 deep " "learning model. It not only identifies tumors but also determines whether they are malignant or" " benign.") st.divider() image_input = 'test_image.jpg' image_output = 'test_image_pred.png' col1_img, col2_img = st.columns(2,gap='medium') with col1_img: st.image(image_input, caption="Input", use_container_width=True) with col2_img: st.image(image_output, caption="Prediction", use_container_width=True) st.divider() if st.session_state.page == "Main": col1_button, col2_button = st.columns(2,gap='medium',vertical_alignment='center') with col1_button: if st.button("Detect from image", key='main_upload', icon = ':material/imagesmode:', type = 'secondary'): self.app.change_page("Upload") with col2_button: if st.button("Detect from video", key='main_camera', icon = ':material/play_circle:', type='primary'): self.app.change_page("Camera")