Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	File size: 1,557 Bytes
			
			1917f1f 4aeaa67 1917f1f 4aeaa67 1917f1f  | 
								1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55  | 
								import gradio as gr
import torch
from transformers import pipeline
username = "davidggphy"  ## Complete your username
model_id = f"{username}/distilhubert-finetuned-gtzan"
device = "cuda:0" if torch.cuda.is_available() else "cpu"
pipe = pipeline("audio-classification", model=model_id, device=device)
# def predict_trunc(filepath):
#     preprocessed = pipe.preprocess(filepath)
#     truncated = pipe.feature_extractor.pad(preprocessed,truncation=True, max_length = 16_000*30)
#     model_outputs = pipe.forward(truncated)
#     outputs = pipe.postprocess(model_outputs)
#     return outputs
def classify_audio(filepath):
    """
      Goes from
      [{'score': 0.8339303731918335, 'label': 'country'},
    {'score': 0.11914275586605072, 'label': 'rock'},]
     to
     {"country":  0.8339303731918335, "rock":0.11914275586605072}
    """
    preds = pipe(filepath)
    # preds = predict_trunc(filepath)
    outputs = {}
    for p in preds:
        outputs[p["label"]] = p["score"]
    return outputs
title = "🎵 Music Genre Classifier"
description = """
demo to showcase the music
classification model that we just trained on the [GTZAN](https://huggingface.co/datasets/marsyas/gtzan)
"""
filenames = ['blues.00098.wav', "disco.00020.wav", "metal.00014.wav", "reggae.00021.wav", "rock.00058.wav"]
filenames = [[f"./{f}"] for f in filenames]
demo = gr.Interface(
    fn=classify_audio,
    inputs=gr.Audio(type="filepath"),
    outputs=gr.outputs.Label(),
    title=title,
    description=description,
    examples=filenames,
)
demo.launch()
 |