Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Commit
·
e8f13e9
1
Parent(s):
35c26f5
draft
Browse files- load_data.py +138 -0
load_data.py
ADDED
|
@@ -0,0 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import chromadb
|
| 2 |
+
import platform
|
| 3 |
+
import polars as pl
|
| 4 |
+
import polars as pl
|
| 5 |
+
from chromadb.utils import embedding_functions
|
| 6 |
+
from typing import List, Tuple, Optional
|
| 7 |
+
from huggingface_hub import InferenceClient
|
| 8 |
+
from tqdm.contrib.concurrent import thread_map
|
| 9 |
+
from huggingface_hub import login
|
| 10 |
+
from dotenv import load_dotenv
|
| 11 |
+
import os
|
| 12 |
+
from datetime import datetime, timedelta
|
| 13 |
+
import stamina
|
| 14 |
+
import requests
|
| 15 |
+
import polars as pl
|
| 16 |
+
from typing import Literal
|
| 17 |
+
|
| 18 |
+
load_dotenv()
|
| 19 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
def get_save_path() -> Literal["chroma/"] | Literal["/data/chroma/"]:
|
| 23 |
+
return "chroma/" if platform.system() == "Darwin" else "/data/chroma/"
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
save_path = get_save_path()
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
chroma_client = chromadb.PersistentClient(
|
| 30 |
+
path=save_path,
|
| 31 |
+
)
|
| 32 |
+
sentence_transformer_ef = embedding_functions.SentenceTransformerEmbeddingFunction(
|
| 33 |
+
model_name="Snowflake/snowflake-arctic-embed-m-long", trust_remote_code=True
|
| 34 |
+
)
|
| 35 |
+
collection = chroma_client.create_collection(
|
| 36 |
+
name="dataset_cards", get_or_create=True, embedding_function=sentence_transformer_ef
|
| 37 |
+
)
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
def get_last_modified_in_collection() -> datetime | None:
|
| 41 |
+
all_items = collection.get(
|
| 42 |
+
include=[
|
| 43 |
+
"metadatas",
|
| 44 |
+
]
|
| 45 |
+
)
|
| 46 |
+
if last_modified := [
|
| 47 |
+
datetime.fromisoformat(item["last_modified"]) for item in all_items["metadatas"]
|
| 48 |
+
]:
|
| 49 |
+
return max(last_modified)
|
| 50 |
+
else:
|
| 51 |
+
return None
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
def parse_markdown_column(
|
| 55 |
+
df: pl.DataFrame, markdown_column: str, dataset_id_column: str
|
| 56 |
+
) -> pl.DataFrame:
|
| 57 |
+
return df.with_columns(
|
| 58 |
+
parsed_markdown=(
|
| 59 |
+
pl.col(markdown_column)
|
| 60 |
+
.str.extract(r"(?s)^---.*?---\s*(.*)", group_index=1)
|
| 61 |
+
.fill_null(pl.col(markdown_column))
|
| 62 |
+
.str.strip_chars()
|
| 63 |
+
),
|
| 64 |
+
prepended_markdown=(
|
| 65 |
+
pl.concat_str(
|
| 66 |
+
[
|
| 67 |
+
pl.lit("Dataset ID "),
|
| 68 |
+
pl.col(dataset_id_column).cast(pl.Utf8),
|
| 69 |
+
pl.lit("\n\n"),
|
| 70 |
+
pl.col(markdown_column)
|
| 71 |
+
.str.extract(r"(?s)^---.*?---\s*(.*)", group_index=1)
|
| 72 |
+
.fill_null(pl.col(markdown_column))
|
| 73 |
+
.str.strip_chars(),
|
| 74 |
+
]
|
| 75 |
+
)
|
| 76 |
+
),
|
| 77 |
+
)
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
def load_cards(
|
| 81 |
+
min_len: int = 50,
|
| 82 |
+
min_likes: int | None = None,
|
| 83 |
+
last_modified: Optional[datetime] = None,
|
| 84 |
+
) -> (
|
| 85 |
+
None
|
| 86 |
+
| Tuple[
|
| 87 |
+
List[str],
|
| 88 |
+
List[str],
|
| 89 |
+
List[datetime],
|
| 90 |
+
]
|
| 91 |
+
):
|
| 92 |
+
df = pl.read_parquet(
|
| 93 |
+
"hf://datasets/librarian-bots/dataset_cards_with_metadata_with_embeddings/data/train-00000-of-00001.parquet"
|
| 94 |
+
)
|
| 95 |
+
df = parse_markdown_column(df, "card", "datasetId")
|
| 96 |
+
df = df.with_columns(pl.col("parsed_markdown").str.len_chars().alias("card_len"))
|
| 97 |
+
print(df)
|
| 98 |
+
df = df.filter(pl.col("card_len") > min_len)
|
| 99 |
+
print(df)
|
| 100 |
+
if min_likes:
|
| 101 |
+
df = df.filter(pl.col("likes") > min_likes)
|
| 102 |
+
if last_modified:
|
| 103 |
+
df = df.filter(pl.col("last_modified") > last_modified)
|
| 104 |
+
if len(df) == 0:
|
| 105 |
+
return None
|
| 106 |
+
|
| 107 |
+
cards = df.get_column("prepended_markdown").to_list()
|
| 108 |
+
model_ids = df.get_column("datasetId").to_list()
|
| 109 |
+
last_modifieds = df.get_column("last_modified").to_list()
|
| 110 |
+
return cards, model_ids, last_modifieds
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
client = InferenceClient(
|
| 114 |
+
model="https://pqzap00ebpl1ydt4.us-east-1.aws.endpoints.huggingface.cloud",
|
| 115 |
+
token=HF_TOKEN,
|
| 116 |
+
)
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
@stamina.retry(on=requests.HTTPError, attempts=3, wait_initial=10)
|
| 120 |
+
def embed_card(text):
|
| 121 |
+
text = text[:8192]
|
| 122 |
+
return client.feature_extraction(text)
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
most_recent = get_last_modified_in_collection()
|
| 126 |
+
|
| 127 |
+
if data := load_cards(min_len=200, min_likes=None, last_modified=most_recent):
|
| 128 |
+
cards, model_ids, last_modifieds = data
|
| 129 |
+
print("mapping...")
|
| 130 |
+
results = thread_map(embed_card, cards)
|
| 131 |
+
collection.upsert(
|
| 132 |
+
ids=model_ids,
|
| 133 |
+
embeddings=[embedding.tolist()[0] for embedding in results],
|
| 134 |
+
metadatas=[{"last_modified": str(lm)} for lm in last_modifieds],
|
| 135 |
+
)
|
| 136 |
+
print("done")
|
| 137 |
+
else:
|
| 138 |
+
print("no new data")
|