Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
ec8173c
1
Parent(s):
7e16395
switch to molmo
Browse files
app.py
CHANGED
|
@@ -1,15 +1,16 @@
|
|
| 1 |
-
import subprocess # 🥲
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
-
subprocess.run(
|
| 4 |
-
"pip install flash-attn --no-build-isolation",
|
| 5 |
-
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
|
| 6 |
-
shell=True,
|
| 7 |
-
)
|
| 8 |
import spaces
|
| 9 |
import gradio as gr
|
| 10 |
-
|
| 11 |
-
from transformers import Qwen2VLForConditionalGeneration
|
| 12 |
-
from qwen_vl_utils import process_vision_info
|
| 13 |
import torch
|
| 14 |
import os
|
| 15 |
import json
|
|
@@ -18,15 +19,28 @@ from typing import Tuple
|
|
| 18 |
|
| 19 |
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
|
| 20 |
|
| 21 |
-
|
| 22 |
-
model =
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
device_map=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
)
|
| 28 |
-
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct")
|
| 29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
|
| 31 |
class GeneralRetrievalQuery(BaseModel):
|
| 32 |
broad_topical_query: str
|
|
@@ -36,7 +50,6 @@ class GeneralRetrievalQuery(BaseModel):
|
|
| 36 |
visual_element_query: str
|
| 37 |
visual_element_explanation: str
|
| 38 |
|
| 39 |
-
|
| 40 |
def get_retrieval_prompt(prompt_name: str) -> Tuple[str, GeneralRetrievalQuery]:
|
| 41 |
if prompt_name != "general":
|
| 42 |
raise ValueError("Only 'general' prompt is available in this version")
|
|
@@ -76,78 +89,74 @@ Generate the queries based on this image and provide the response in the specifi
|
|
| 76 |
|
| 77 |
return prompt, GeneralRetrievalQuery
|
| 78 |
|
| 79 |
-
|
| 80 |
-
# defined like this so we can later add more prompting options
|
| 81 |
prompt, pydantic_model = get_retrieval_prompt("general")
|
| 82 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
|
| 84 |
def _prep_data_for_input(image):
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
"content": [
|
| 89 |
-
{
|
| 90 |
-
"type": "image",
|
| 91 |
-
"image": image,
|
| 92 |
-
},
|
| 93 |
-
{"type": "text", "text": prompt},
|
| 94 |
-
],
|
| 95 |
-
}
|
| 96 |
-
]
|
| 97 |
-
|
| 98 |
-
text = processor.apply_chat_template(
|
| 99 |
-
messages, tokenize=False, add_generation_prompt=True
|
| 100 |
)
|
| 101 |
|
| 102 |
-
image_inputs, video_inputs = process_vision_info(messages)
|
| 103 |
-
|
| 104 |
-
return processor(
|
| 105 |
-
text=[text],
|
| 106 |
-
images=image_inputs,
|
| 107 |
-
videos=video_inputs,
|
| 108 |
-
padding=True,
|
| 109 |
-
return_tensors="pt",
|
| 110 |
-
)
|
| 111 |
-
|
| 112 |
-
|
| 113 |
@spaces.GPU
|
| 114 |
def generate_response(image):
|
| 115 |
inputs = _prep_data_for_input(image)
|
| 116 |
-
inputs =
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
| 122 |
-
]
|
| 123 |
-
|
| 124 |
-
output_text = processor.batch_decode(
|
| 125 |
-
generated_ids_trimmed,
|
| 126 |
-
skip_special_tokens=True,
|
| 127 |
-
clean_up_tokenization_spaces=False,
|
| 128 |
)
|
|
|
|
|
|
|
|
|
|
| 129 |
try:
|
| 130 |
-
return json.loads(output_text
|
| 131 |
except Exception:
|
| 132 |
gr.Warning("Failed to parse JSON from output")
|
| 133 |
return {}
|
| 134 |
|
| 135 |
-
|
| 136 |
title = "ColPali fine-tuning Query Generator"
|
| 137 |
description = """[ColPali](https://huggingface.co/papers/2407.01449) is a very exciting new approach to multimodal document retrieval which aims to replace existing document retrievers which often rely on an OCR step with an end-to-end multimodal approach.
|
| 138 |
|
| 139 |
To train or fine-tune a ColPali model, we need a dataset of image-text pairs which represent the document images and the relevant text queries which those documents should match.
|
| 140 |
To make the ColPali models work even better we might want a dataset of query/image document pairs related to our domain or task.
|
| 141 |
|
| 142 |
-
One way in which we might go about generating such a dataset is to use
|
| 143 |
-
This space uses the [
|
| 144 |
|
| 145 |
**Note** there is a lot of scope for improving to prompts and the quality of the generated queries! If you have any suggestions for improvements please [open a Discussion](https://huggingface.co/spaces/davanstrien/ColPali-Query-Generator/discussions/new)!
|
| 146 |
|
| 147 |
This [blog post](https://danielvanstrien.xyz/posts/post-with-code/colpali/2024-09-23-generate_colpali_dataset.html) gives an overview of how you can use this kind of approach to generate a full dataset for fine-tuning ColPali models.
|
| 148 |
|
| 149 |
If you want to convert a PDF(s) to a dataset of page images you can try out the [ PDFs to Page Images Converter](https://huggingface.co/spaces/Dataset-Creation-Tools/pdf-to-page-images-dataset) Space.
|
| 150 |
-
|
| 151 |
"""
|
| 152 |
|
| 153 |
examples = [
|
|
@@ -163,4 +172,4 @@ demo = gr.Interface(
|
|
| 163 |
description=description,
|
| 164 |
examples=examples,
|
| 165 |
)
|
| 166 |
-
demo.launch()
|
|
|
|
| 1 |
+
# import subprocess # 🥲 need for flash attention in QWEN model
|
| 2 |
+
|
| 3 |
+
# subprocess.run(
|
| 4 |
+
# "pip install flash-attn --no-build-isolation",
|
| 5 |
+
# env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
|
| 6 |
+
# shell=True,
|
| 7 |
+
# )
|
| 8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
import spaces
|
| 10 |
import gradio as gr
|
| 11 |
+
from transformers import AutoModelForCausalLM, AutoProcessor
|
| 12 |
+
# from transformers import Qwen2VLForConditionalGeneration # Uncomment when adding QWEN back
|
| 13 |
+
# from qwen_vl_utils import process_vision_info # Uncomment when adding QWEN back
|
| 14 |
import torch
|
| 15 |
import os
|
| 16 |
import json
|
|
|
|
| 19 |
|
| 20 |
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
|
| 21 |
|
| 22 |
+
# Load Molmo model
|
| 23 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 24 |
+
'allenai/Molmo-7B-D-0924',
|
| 25 |
+
trust_remote_code=True,
|
| 26 |
+
torch_dtype='auto',
|
| 27 |
+
device_map='auto'
|
| 28 |
+
)
|
| 29 |
+
processor = AutoProcessor.from_pretrained(
|
| 30 |
+
'allenai/Molmo-7B-D-0924',
|
| 31 |
+
trust_remote_code=True,
|
| 32 |
+
torch_dtype='auto',
|
| 33 |
+
device_map='auto'
|
| 34 |
)
|
|
|
|
| 35 |
|
| 36 |
+
# # Load Qwen model (commented out for now)
|
| 37 |
+
# qwen_model = Qwen2VLForConditionalGeneration.from_pretrained(
|
| 38 |
+
# "Qwen/Qwen2-VL-7B-Instruct",
|
| 39 |
+
# torch_dtype=torch.bfloat16,
|
| 40 |
+
# attn_implementation="flash_attention_2",
|
| 41 |
+
# device_map="auto",
|
| 42 |
+
# )
|
| 43 |
+
# qwen_processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct")
|
| 44 |
|
| 45 |
class GeneralRetrievalQuery(BaseModel):
|
| 46 |
broad_topical_query: str
|
|
|
|
| 50 |
visual_element_query: str
|
| 51 |
visual_element_explanation: str
|
| 52 |
|
|
|
|
| 53 |
def get_retrieval_prompt(prompt_name: str) -> Tuple[str, GeneralRetrievalQuery]:
|
| 54 |
if prompt_name != "general":
|
| 55 |
raise ValueError("Only 'general' prompt is available in this version")
|
|
|
|
| 89 |
|
| 90 |
return prompt, GeneralRetrievalQuery
|
| 91 |
|
|
|
|
|
|
|
| 92 |
prompt, pydantic_model = get_retrieval_prompt("general")
|
| 93 |
|
| 94 |
+
# def _prep_data_for_input_qwen(image):
|
| 95 |
+
# messages = [
|
| 96 |
+
# {
|
| 97 |
+
# "role": "user",
|
| 98 |
+
# "content": [
|
| 99 |
+
# {
|
| 100 |
+
# "type": "image",
|
| 101 |
+
# "image": image,
|
| 102 |
+
# },
|
| 103 |
+
# {"type": "text", "text": prompt},
|
| 104 |
+
# ],
|
| 105 |
+
# }
|
| 106 |
+
# ]
|
| 107 |
+
#
|
| 108 |
+
# text = qwen_processor.apply_chat_template(
|
| 109 |
+
# messages, tokenize=False, add_generation_prompt=True
|
| 110 |
+
# )
|
| 111 |
+
#
|
| 112 |
+
# image_inputs, video_inputs = process_vision_info(messages)
|
| 113 |
+
#
|
| 114 |
+
# return qwen_processor(
|
| 115 |
+
# text=[text],
|
| 116 |
+
# images=image_inputs,
|
| 117 |
+
# videos=video_inputs,
|
| 118 |
+
# padding=True,
|
| 119 |
+
# return_tensors="pt",
|
| 120 |
+
# )
|
| 121 |
|
| 122 |
def _prep_data_for_input(image):
|
| 123 |
+
return processor.process(
|
| 124 |
+
images=[image],
|
| 125 |
+
text=prompt
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 126 |
)
|
| 127 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 128 |
@spaces.GPU
|
| 129 |
def generate_response(image):
|
| 130 |
inputs = _prep_data_for_input(image)
|
| 131 |
+
inputs = {k: v.to(model.device).unsqueeze(0) for k, v in inputs.items()}
|
| 132 |
+
output = model.generate_from_batch(
|
| 133 |
+
inputs,
|
| 134 |
+
gr.GenerationConfig(max_new_tokens=200, stop_strings="<|endoftext|>"),
|
| 135 |
+
tokenizer=processor.tokenizer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 136 |
)
|
| 137 |
+
generated_tokens = output[0, inputs['input_ids'].size(1):]
|
| 138 |
+
output_text = processor.tokenizer.decode(generated_tokens, skip_special_tokens=True)
|
| 139 |
+
|
| 140 |
try:
|
| 141 |
+
return json.loads(output_text)
|
| 142 |
except Exception:
|
| 143 |
gr.Warning("Failed to parse JSON from output")
|
| 144 |
return {}
|
| 145 |
|
|
|
|
| 146 |
title = "ColPali fine-tuning Query Generator"
|
| 147 |
description = """[ColPali](https://huggingface.co/papers/2407.01449) is a very exciting new approach to multimodal document retrieval which aims to replace existing document retrievers which often rely on an OCR step with an end-to-end multimodal approach.
|
| 148 |
|
| 149 |
To train or fine-tune a ColPali model, we need a dataset of image-text pairs which represent the document images and the relevant text queries which those documents should match.
|
| 150 |
To make the ColPali models work even better we might want a dataset of query/image document pairs related to our domain or task.
|
| 151 |
|
| 152 |
+
One way in which we might go about generating such a dataset is to use a VLM to generate synthetic queries for us.
|
| 153 |
+
This space uses the [allenai/Molmo-7B-D-0924](https://huggingface.co/allenai/Molmo-7B-D-0924) model to generate queries for a document, based on an input document image.
|
| 154 |
|
| 155 |
**Note** there is a lot of scope for improving to prompts and the quality of the generated queries! If you have any suggestions for improvements please [open a Discussion](https://huggingface.co/spaces/davanstrien/ColPali-Query-Generator/discussions/new)!
|
| 156 |
|
| 157 |
This [blog post](https://danielvanstrien.xyz/posts/post-with-code/colpali/2024-09-23-generate_colpali_dataset.html) gives an overview of how you can use this kind of approach to generate a full dataset for fine-tuning ColPali models.
|
| 158 |
|
| 159 |
If you want to convert a PDF(s) to a dataset of page images you can try out the [ PDFs to Page Images Converter](https://huggingface.co/spaces/Dataset-Creation-Tools/pdf-to-page-images-dataset) Space.
|
|
|
|
| 160 |
"""
|
| 161 |
|
| 162 |
examples = [
|
|
|
|
| 172 |
description=description,
|
| 173 |
examples=examples,
|
| 174 |
)
|
| 175 |
+
demo.launch()
|