davanstrien HF staff commited on
Commit
38576ff
β€’
1 Parent(s): 9e7d682

return text

Browse files
Files changed (1) hide show
  1. app.py +4 -4
app.py CHANGED
@@ -87,7 +87,7 @@ def _prep_data_for_input(image):
87
  text=prompt
88
  )
89
 
90
- @spaces.GPU
91
  def generate_response(image):
92
  inputs = _prep_data_for_input(image)
93
  inputs = {k: v.to(model.device).unsqueeze(0) for k, v in inputs.items()}
@@ -100,10 +100,10 @@ def generate_response(image):
100
  output_text = processor.tokenizer.decode(generated_tokens, skip_special_tokens=True)
101
 
102
  try:
103
- return json.loads(output_text)
104
  except Exception:
105
  gr.Warning("Failed to parse JSON from output")
106
- return {}
107
 
108
  title = "ColPali fine-tuning Query Generator"
109
  description = """[ColPali](https://huggingface.co/papers/2407.01449) is a very exciting new approach to multimodal document retrieval which aims to replace existing document retrievers which often rely on an OCR step with an end-to-end multimodal approach.
@@ -129,7 +129,7 @@ examples = [
129
  demo = gr.Interface(
130
  fn=generate_response,
131
  inputs=gr.Image(type="pil"),
132
- outputs=gr.Json(),
133
  title=title,
134
  description=description,
135
  examples=examples,
 
87
  text=prompt
88
  )
89
 
90
+ @spaces.GPU(duration=120)
91
  def generate_response(image):
92
  inputs = _prep_data_for_input(image)
93
  inputs = {k: v.to(model.device).unsqueeze(0) for k, v in inputs.items()}
 
100
  output_text = processor.tokenizer.decode(generated_tokens, skip_special_tokens=True)
101
 
102
  try:
103
+ return str(json.loads(output_text))
104
  except Exception:
105
  gr.Warning("Failed to parse JSON from output")
106
+ return output_text
107
 
108
  title = "ColPali fine-tuning Query Generator"
109
  description = """[ColPali](https://huggingface.co/papers/2407.01449) is a very exciting new approach to multimodal document retrieval which aims to replace existing document retrievers which often rely on an OCR step with an end-to-end multimodal approach.
 
129
  demo = gr.Interface(
130
  fn=generate_response,
131
  inputs=gr.Image(type="pil"),
132
+ outputs=gr.Text(),
133
  title=title,
134
  description=description,
135
  examples=examples,