File size: 9,017 Bytes
8ba260b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
import pandas as pd
from sklearn.model_selection import train_test_split
from transformers import AutoTokenizer, AutoModelForSequenceClassification, Trainer, TrainingArguments
from datasets import Dataset
import torch
import joblib
from sklearn.metrics import classification_report
import numpy as np
import re
import wandb
from imblearn.over_sampling import RandomOverSampler
import random
from nltk.corpus import wordnet
import nltk
from warnings import filterwarnings
filterwarnings('ignore')
nltk.download('wordnet', quiet=True)
wandb.init(mode="disabled")
def clean_text(text):
text = re.sub(r'@\w+', '', text)
text = re.sub(r'#\w+', '', text)
text = re.sub(r'{links}', '', text)
text = re.sub(r'http\S+|www.\S+', '', text)
text = re.sub(r'[^A-Za-z0-9\s]', ' ', text)
text = re.sub(r'\s+', ' ', text).strip()
return text
def preprocess_data(df):
df.columns = ['text', 'target', 'emotion']
df = df[df['emotion'] != 'I can\'t tell']
df = df[~df['text'].isna()].reset_index(drop=True)
target_mapping = {
'Google': 'Google',
'Apple': 'Apple',
'iPad': 'iPad',
'iPhone': 'iPhone',
'Other Google product or service': 'Google',
'Other Apple product or service': 'Apple',
'Android': 'Android',
'Android App': 'Android App',
'iPad or iPhone App': 'iPad or iPhone App',
}
df['new_text'] = df['text'].apply(clean_text)
df['new_target'] = df['target'].apply(lambda x: target_mapping.get(x, 'No Product'))
df['target'] = df['target'].fillna('No Product')
return df
def compute_metrics(eval_pred):
logits, labels = eval_pred
predictions = np.argmax(logits, axis=-1)
return {
'accuracy': (predictions == labels).mean(),
}
def random_word_drop(text, max_words=3):
words = text.split()
if len(words) <= max_words:
return text
num_to_drop = random.randint(1, min(max_words, len(words) - 1))
drop_indices = random.sample(range(len(words)), num_to_drop)
return ' '.join([word for i, word in enumerate(words) if i not in drop_indices])
def synonym_replacement(text, n=1):
words = text.split()
new_words = words.copy()
random_word_list = list(set([word for word in words if word.isalnum()]))
random.shuffle(random_word_list)
num_replaced = 0
for random_word in random_word_list:
synonyms = []
for syn in wordnet.synsets(random_word):
for l in syn.lemmas():
synonyms.append(l.name())
if len(synonyms) >= 1:
synonym = random.choice(list(set(synonyms)))
new_words = [synonym if word == random_word else word for word in new_words]
num_replaced += 1
if num_replaced >= n:
break
return ' '.join(new_words)
def print_class_distribution(df, stage):
class_dist = df['sentiment_label'].value_counts().sort_index()
total = len(df)
print(f"\nClass distribution - {stage}:")
for label, count in class_dist.items():
percentage = (count / total) * 100
print(f"Class {label}: {count} ({percentage:.2f}%)")
def augment_data(df):
class_counts = df['sentiment_label'].value_counts()
max_class = class_counts.idxmax()
min_class = class_counts.idxmin()
augmented_data = []
for _, row in df.iterrows():
# Original data
augmented_data.append({
'new_text': row['new_text'],
'new_target': row['new_target'],
'sentiment_label': row['sentiment_label']
})
# Augment less for the highest class
if row['sentiment_label'] == max_class:
if random.random() < 0.4: # 50% chance to augment
new_text = random_word_drop(row['new_text'])
augmented_data.append({
'new_text': new_text,
'new_target': row['new_target'],
'sentiment_label': row['sentiment_label']
})
else:
# Random word drop
new_text = random_word_drop(row['new_text'])
augmented_data.append({
'new_text': new_text,
'new_target': row['new_target'],
'sentiment_label': row['sentiment_label']
})
# Synonym replacement
new_text = synonym_replacement(row['new_text'])
augmented_data.append({
'new_text': new_text,
'new_target': row['new_target'],
'sentiment_label': row['sentiment_label']
})
# Extra augmentation for the lowest class
if row['sentiment_label'] == min_class:
new_text = random_word_drop(synonym_replacement(row['new_text']))
augmented_data.append({
'new_text': new_text,
'new_target': row['new_target'],
'sentiment_label': row['sentiment_label']
})
augmented_df = pd.DataFrame(augmented_data)
augmented_df['combined_input'] = augmented_df['new_text'] + " [SEP] " + augmented_df['new_target']
return augmented_df
def balance_data(df):
X = df[['combined_input']]
y = df['sentiment_label']
ros = RandomOverSampler(random_state=42)
X_resampled, y_resampled = ros.fit_resample(X, y)
balanced_df = pd.DataFrame({
'combined_input': X_resampled['combined_input'],
'sentiment_label': y_resampled
})
return balanced_df
def train_model_v2(df):
emo_dict = {'Negative emotion': 0, 'Positive emotion': 1, 'No emotion toward brand or product': 2}
df['sentiment_label'] = df['emotion'].apply(lambda x: emo_dict[x])
train_data, val_data = train_test_split(df, test_size=0.2, stratify=df['sentiment_label'], random_state=42)
print_class_distribution(train_data, "Before augmentation and balancing")
# Augment and balance only the training data
train_data = augment_data(train_data)
print_class_distribution(train_data, "After augmentation")
train_data = balance_data(train_data)
print_class_distribution(train_data, "After balancing")
val_data['combined_input'] = val_data['new_text'] + " [SEP] " + val_data['new_target']
train_data = train_data[['combined_input', 'sentiment_label']]
val_data = val_data[['combined_input', 'sentiment_label']]
tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
def preprocess_function(examples):
tokenized_inputs = tokenizer(examples['combined_input'], padding='max_length', truncation=True, max_length=128)
tokenized_inputs['labels'] = examples['sentiment_label']
return tokenized_inputs
train_dataset = Dataset.from_pandas(train_data)
val_dataset = Dataset.from_pandas(val_data[['combined_input', 'sentiment_label']])
train_dataset = train_dataset.map(preprocess_function, batched=True)
val_dataset = val_dataset.map(preprocess_function, batched=True)
model = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment", num_labels=3)
for name, param in model.named_parameters():
if not any(layer in name for layer in ['encoder.layer.11', 'encoder.layer.10','encoder.layer.9','encoder.layer.8', 'pooler', 'classifier']):
param.requires_grad = False
training_args = TrainingArguments(
output_dir='./results',
evaluation_strategy="epoch",
save_strategy="epoch",
logging_steps=50,
learning_rate=1e-5,
per_device_train_batch_size=256,
per_device_eval_batch_size=256,
num_train_epochs=8,
weight_decay=0.01,
logging_strategy="steps",
load_best_model_at_end=True,
report_to="none",
metric_for_best_model="eval_loss",
)
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=val_dataset,
tokenizer=tokenizer,
compute_metrics=compute_metrics
)
trainer.train()
# Save the model and tokenizer
output_dir = "./emotion_model"
trainer.save_model(output_dir)
tokenizer.save_pretrained(output_dir)
print(f"Model and tokenizer saved to {output_dir}")
# Generate and print classification report
predictions = trainer.predict(val_dataset)
preds = np.argmax(predictions.predictions, axis=-1)
labels = predictions.label_ids
print("\nClassification Report:")
print(classification_report(labels, preds, target_names=list(emo_dict.keys())))
if __name__ == "__main__":
df = pd.read_excel('NLP Engineer Assignment Dataset (1) (1) (1) (1).xlsx', sheet_name='Train')
processed_df = preprocess_data(df)
train_model_v2(processed_df)
|