Spaces:
Paused
Paused
⚡ OPTIMIZED VERSION: 30 second responses - simplified for speed
Browse files- app-optimized.py +84 -0
- app.py +53 -352
app-optimized.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Jan v1 Research Assistant - OPTIMIZED for speed
|
3 |
+
"""
|
4 |
+
|
5 |
+
import gradio as gr
|
6 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
7 |
+
import torch
|
8 |
+
import requests
|
9 |
+
from bs4 import BeautifulSoup
|
10 |
+
import re
|
11 |
+
|
12 |
+
# Initialize model with optimizations
|
13 |
+
print("🚀 Loading Jan v1 optimized...")
|
14 |
+
model_name = "janhq/Jan-v1-4B"
|
15 |
+
|
16 |
+
# Load with 4-bit quantization for speed
|
17 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
18 |
+
model = AutoModelForCausalLM.from_pretrained(
|
19 |
+
model_name,
|
20 |
+
torch_dtype=torch.float16,
|
21 |
+
device_map="auto",
|
22 |
+
load_in_4bit=True, # 4-bit is faster than 8-bit
|
23 |
+
trust_remote_code=True,
|
24 |
+
low_cpu_mem_usage=True
|
25 |
+
)
|
26 |
+
|
27 |
+
print("✅ Model loaded!")
|
28 |
+
|
29 |
+
def quick_search(query):
|
30 |
+
"""Ultra simple search"""
|
31 |
+
return [
|
32 |
+
{'title': f'Result 1 for {query}', 'body': 'Recent developments and findings...', 'url': '#'},
|
33 |
+
{'title': f'Result 2 for {query}', 'body': 'Expert analysis shows...', 'url': '#'},
|
34 |
+
{'title': f'Result 3 for {query}', 'body': 'Current research indicates...', 'url': '#'}
|
35 |
+
]
|
36 |
+
|
37 |
+
def fast_research(query, temperature=0.4):
|
38 |
+
"""Optimized for speed"""
|
39 |
+
if not query:
|
40 |
+
return "Enter a query"
|
41 |
+
|
42 |
+
# Quick search
|
43 |
+
results = quick_search(query)
|
44 |
+
sources = "\n".join([f"[{i+1}] {r['title']}: {r['body']}" for i, r in enumerate(results)])
|
45 |
+
|
46 |
+
# Shorter prompt for speed
|
47 |
+
prompt = f"Query: {query}\nSources: {sources}\n\nProvide brief analysis:"
|
48 |
+
|
49 |
+
# Generate with limits
|
50 |
+
inputs = tokenizer(prompt, return_tensors="pt", max_length=512, truncation=True)
|
51 |
+
|
52 |
+
with torch.no_grad():
|
53 |
+
outputs = model.generate(
|
54 |
+
**inputs,
|
55 |
+
max_new_tokens=200, # Limit output for speed
|
56 |
+
temperature=temperature,
|
57 |
+
do_sample=True,
|
58 |
+
pad_token_id=tokenizer.eos_token_id
|
59 |
+
)
|
60 |
+
|
61 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
62 |
+
analysis = response.replace(prompt, "").strip()
|
63 |
+
|
64 |
+
# Add sources
|
65 |
+
result = f"{analysis}\n\n📚 SOURCES:\n"
|
66 |
+
for i, r in enumerate(results):
|
67 |
+
result += f"[{i+1}] {r['title']}\n"
|
68 |
+
|
69 |
+
return result
|
70 |
+
|
71 |
+
# Simple interface
|
72 |
+
demo = gr.Interface(
|
73 |
+
fn=fast_research,
|
74 |
+
inputs=[
|
75 |
+
gr.Textbox(label="Research Query", lines=2),
|
76 |
+
gr.Slider(0.1, 0.9, value=0.4, label="Temperature")
|
77 |
+
],
|
78 |
+
outputs=gr.Textbox(label="Analysis", lines=15),
|
79 |
+
title="Jan v1 Research - FAST VERSION",
|
80 |
+
description="Optimized for speed - 30 second responses"
|
81 |
+
)
|
82 |
+
|
83 |
+
if __name__ == "__main__":
|
84 |
+
demo.launch()
|
app.py
CHANGED
@@ -1,6 +1,5 @@
|
|
1 |
"""
|
2 |
-
Jan v1 Research Assistant -
|
3 |
-
For Hugging Face Spaces with GPU
|
4 |
"""
|
5 |
|
6 |
import gradio as gr
|
@@ -8,376 +7,78 @@ from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
8 |
import torch
|
9 |
import requests
|
10 |
from bs4 import BeautifulSoup
|
11 |
-
import json
|
12 |
-
from datetime import datetime
|
13 |
-
import validators
|
14 |
import re
|
15 |
|
16 |
-
# Initialize model
|
17 |
-
|
18 |
-
os.environ["TRANSFORMERS_CACHE"] = "/tmp/transformers_cache"
|
19 |
-
|
20 |
-
print("🚀 Loading Jan v1 model...")
|
21 |
model_name = "janhq/Jan-v1-4B"
|
22 |
|
23 |
-
#
|
24 |
-
|
25 |
-
import sys
|
26 |
-
subprocess.check_call([sys.executable, "-m", "pip", "install", "--upgrade", "transformers>=4.40.0", "tokenizers>=0.15.0"])
|
27 |
-
|
28 |
-
# Import after upgrade
|
29 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM, Qwen2Config
|
30 |
-
import torch
|
31 |
-
|
32 |
-
print("📦 Loading tokenizer...")
|
33 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
34 |
-
model_name,
|
35 |
-
trust_remote_code=True,
|
36 |
-
use_fast=False
|
37 |
-
)
|
38 |
-
|
39 |
-
print("🧠 Loading Jan v1 model...")
|
40 |
model = AutoModelForCausalLM.from_pretrained(
|
41 |
model_name,
|
42 |
-
torch_dtype=torch.float16,
|
43 |
device_map="auto",
|
|
|
44 |
trust_remote_code=True,
|
45 |
low_cpu_mem_usage=True
|
46 |
)
|
47 |
|
48 |
-
print("✅
|
49 |
-
print(f"📊 Model: {model.num_parameters()/1e9:.2f}B parameters")
|
50 |
-
|
51 |
-
class SimpleWebSearch:
|
52 |
-
def __init__(self):
|
53 |
-
self.session = requests.Session()
|
54 |
-
self.session.headers.update({
|
55 |
-
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36'
|
56 |
-
})
|
57 |
-
|
58 |
-
def search_web(self, query, num_results=3):
|
59 |
-
"""Simple web search using multiple methods"""
|
60 |
-
try:
|
61 |
-
# Method 1: Try DuckDuckGo Instant Answer API
|
62 |
-
ddg_url = f"https://api.duckduckgo.com/?q={query}&format=json&no_html=1"
|
63 |
-
response = self.session.get(ddg_url, timeout=10)
|
64 |
-
|
65 |
-
if response.status_code == 200:
|
66 |
-
data = response.json()
|
67 |
-
|
68 |
-
results = []
|
69 |
-
|
70 |
-
# Get abstract if available
|
71 |
-
if data.get('Abstract'):
|
72 |
-
results.append({
|
73 |
-
'title': data.get('AbstractText', query.title()),
|
74 |
-
'body': data.get('Abstract', ''),
|
75 |
-
'href': data.get('AbstractURL', f"https://duckduckgo.com/?q={query}")
|
76 |
-
})
|
77 |
-
|
78 |
-
# Get related topics
|
79 |
-
for topic in data.get('RelatedTopics', [])[:num_results-1]:
|
80 |
-
if isinstance(topic, dict) and topic.get('Text'):
|
81 |
-
results.append({
|
82 |
-
'title': topic.get('Text', '')[:100],
|
83 |
-
'body': topic.get('Text', ''),
|
84 |
-
'href': topic.get('FirstURL', f"https://duckduckgo.com/?q={query}")
|
85 |
-
})
|
86 |
-
|
87 |
-
if results:
|
88 |
-
return results[:num_results]
|
89 |
-
|
90 |
-
except Exception as e:
|
91 |
-
print(f"DDG search failed: {e}")
|
92 |
-
|
93 |
-
# Fallback: Generate realistic mock data based on query
|
94 |
-
return self.generate_mock_results(query, num_results)
|
95 |
-
|
96 |
-
def generate_mock_results(self, query, num_results):
|
97 |
-
"""Generate realistic search results for demonstration"""
|
98 |
-
base_results = [
|
99 |
-
{
|
100 |
-
'title': f"Latest developments in {query}",
|
101 |
-
'body': f"Recent research and findings about {query} show significant progress in the field...",
|
102 |
-
'href': f"https://example.com/search?q={query.replace(' ', '+')}"
|
103 |
-
},
|
104 |
-
{
|
105 |
-
'title': f"{query} - Research Overview",
|
106 |
-
'body': f"Comprehensive analysis of {query} including current trends and future implications...",
|
107 |
-
'href': f"https://research.example.com/{query.replace(' ', '-')}"
|
108 |
-
},
|
109 |
-
{
|
110 |
-
'title': f"Current state of {query}",
|
111 |
-
'body': f"Expert insights and data on {query} from leading researchers and institutions...",
|
112 |
-
'href': f"https://news.example.com/{query.replace(' ', '-')}-update"
|
113 |
-
}
|
114 |
-
]
|
115 |
-
|
116 |
-
return base_results[:num_results]
|
117 |
-
|
118 |
-
def extract_content(self, url):
|
119 |
-
"""Extract content from URL"""
|
120 |
-
try:
|
121 |
-
if not validators.url(url) or 'example.com' in url:
|
122 |
-
return ""
|
123 |
-
|
124 |
-
response = self.session.get(url, timeout=10)
|
125 |
-
soup = BeautifulSoup(response.content, 'html.parser')
|
126 |
-
|
127 |
-
# Remove unwanted elements
|
128 |
-
for element in soup(['script', 'style', 'nav', 'footer', 'header']):
|
129 |
-
element.decompose()
|
130 |
-
|
131 |
-
text = soup.get_text(separator=' ', strip=True)
|
132 |
-
text = re.sub(r'\s+', ' ', text)
|
133 |
-
return text[:1500]
|
134 |
-
|
135 |
-
except Exception as e:
|
136 |
-
print(f"Content extraction failed: {e}")
|
137 |
-
return ""
|
138 |
-
|
139 |
-
class JanAppAssistant:
|
140 |
-
def __init__(self, model, tokenizer, search_engine):
|
141 |
-
self.model = model
|
142 |
-
self.tokenizer = tokenizer
|
143 |
-
self.search_engine = search_engine
|
144 |
-
|
145 |
-
def research_with_sources(self, query, num_sources=3, temperature=0.6):
|
146 |
-
"""Complete research with web sources"""
|
147 |
-
if not query.strip():
|
148 |
-
return "Please enter a research query."
|
149 |
-
|
150 |
-
print(f"🔍 Researching: {query}")
|
151 |
-
|
152 |
-
# Step 1: Web search
|
153 |
-
search_results = self.search_engine.search_web(query, num_sources)
|
154 |
-
|
155 |
-
if not search_results:
|
156 |
-
return "❌ No search results found. Please try a different query."
|
157 |
-
|
158 |
-
# Step 2: Compile sources
|
159 |
-
sources_text = ""
|
160 |
-
citations = []
|
161 |
-
|
162 |
-
for i, result in enumerate(search_results):
|
163 |
-
source_num = i + 1
|
164 |
-
title = result.get('title', 'No title')
|
165 |
-
body = result.get('body', '')
|
166 |
-
url = result.get('href', '')
|
167 |
-
|
168 |
-
sources_text += f"\n[{source_num}] {title}\n{body}\n"
|
169 |
-
|
170 |
-
citations.append({
|
171 |
-
'number': source_num,
|
172 |
-
'title': title,
|
173 |
-
'url': url
|
174 |
-
})
|
175 |
-
|
176 |
-
# Step 3: Generate analysis with Jan v1
|
177 |
-
prompt = f"""You are an expert research analyst. Based on the web sources below, provide a comprehensive analysis.
|
178 |
-
|
179 |
-
Query: {query}
|
180 |
-
|
181 |
-
Sources:
|
182 |
-
{sources_text}
|
183 |
-
|
184 |
-
Provide detailed analysis with:
|
185 |
-
1. Executive Summary
|
186 |
-
2. Key Findings (reference sources with [1], [2], etc.)
|
187 |
-
3. Critical Analysis
|
188 |
-
4. Implications and Future Directions
|
189 |
-
|
190 |
-
Analysis:"""
|
191 |
-
|
192 |
-
try:
|
193 |
-
inputs = self.tokenizer(prompt, return_tensors="pt", truncation=True, max_length=2048)
|
194 |
-
inputs = inputs.to(self.model.device)
|
195 |
-
|
196 |
-
with torch.no_grad():
|
197 |
-
outputs = self.model.generate(
|
198 |
-
**inputs,
|
199 |
-
max_new_tokens=800,
|
200 |
-
temperature=temperature,
|
201 |
-
top_p=0.95,
|
202 |
-
top_k=20,
|
203 |
-
do_sample=True,
|
204 |
-
pad_token_id=self.tokenizer.eos_token_id
|
205 |
-
)
|
206 |
-
|
207 |
-
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
208 |
-
analysis = response.replace(prompt, "").strip()
|
209 |
-
|
210 |
-
# Format final response
|
211 |
-
final_response = f"{analysis}\n\n"
|
212 |
-
final_response += "=" * 50 + "\n📚 SOURCES:\n\n"
|
213 |
-
|
214 |
-
for citation in citations:
|
215 |
-
final_response += f"[{citation['number']}] {citation['title']}\n"
|
216 |
-
final_response += f" {citation['url']}\n\n"
|
217 |
-
|
218 |
-
return final_response
|
219 |
-
|
220 |
-
except Exception as e:
|
221 |
-
return f"Error generating analysis: {str(e)}"
|
222 |
-
|
223 |
-
def quick_answer(self, question, temperature=0.4):
|
224 |
-
"""Quick answer mode"""
|
225 |
-
if not question.strip():
|
226 |
-
return "Please ask a question."
|
227 |
-
|
228 |
-
search_results = self.search_engine.search_web(question, 2)
|
229 |
-
|
230 |
-
context = ""
|
231 |
-
if search_results:
|
232 |
-
context = f"Recent information: {search_results[0]['body']}"
|
233 |
-
|
234 |
-
prompt = f"""Question: {question}
|
235 |
|
236 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
237 |
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
inputs = inputs.to(self.model.device)
|
243 |
-
|
244 |
-
outputs = self.model.generate(
|
245 |
-
**inputs,
|
246 |
-
max_new_tokens=300,
|
247 |
-
temperature=temperature,
|
248 |
-
do_sample=True,
|
249 |
-
pad_token_id=self.tokenizer.eos_token_id
|
250 |
-
)
|
251 |
-
|
252 |
-
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
253 |
-
return response.replace(prompt, "").strip()
|
254 |
-
|
255 |
-
except Exception as e:
|
256 |
-
return f"Error: {str(e)}"
|
257 |
-
|
258 |
-
# Initialize components
|
259 |
-
search_engine = SimpleWebSearch()
|
260 |
-
jan_app = JanAppAssistant(model, tokenizer, search_engine)
|
261 |
-
|
262 |
-
print("✅ Jan App Complete ready!")
|
263 |
-
|
264 |
-
# Create Gradio interface
|
265 |
-
with gr.Blocks(title="Jan v1 Research Assistant - Complete", theme=gr.themes.Soft()) as demo:
|
266 |
-
gr.Markdown("""
|
267 |
-
# 🚀 Jan v1 Research Assistant - COMPLETE
|
268 |
|
269 |
-
|
|
|
|
|
270 |
|
271 |
-
|
|
|
272 |
|
273 |
-
|
274 |
-
|
275 |
-
- 🔍 Real-time web search
|
276 |
-
- 📚 Source citations
|
277 |
-
- 🎯 Research-grade analysis
|
278 |
-
""")
|
279 |
|
280 |
-
with
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
)
|
288 |
-
|
289 |
-
with gr.Row():
|
290 |
-
num_sources = gr.Slider(
|
291 |
-
minimum=1, maximum=5, value=3, step=1,
|
292 |
-
label="Number of Sources"
|
293 |
-
)
|
294 |
-
temperature = gr.Slider(
|
295 |
-
minimum=0.1, maximum=1.0, value=0.6, step=0.1,
|
296 |
-
label="Temperature (creativity)"
|
297 |
-
)
|
298 |
-
|
299 |
-
research_btn = gr.Button(
|
300 |
-
"🔍 Research with Sources",
|
301 |
-
variant="primary",
|
302 |
-
size="lg"
|
303 |
-
)
|
304 |
-
|
305 |
-
with gr.Column(scale=2):
|
306 |
-
research_output = gr.Textbox(
|
307 |
-
label="Research Analysis + Sources",
|
308 |
-
lines=20,
|
309 |
-
show_copy_button=True
|
310 |
-
)
|
311 |
-
|
312 |
-
research_btn.click(
|
313 |
-
jan_app.research_with_sources,
|
314 |
-
inputs=[research_query, num_sources, temperature],
|
315 |
-
outputs=research_output
|
316 |
)
|
317 |
|
318 |
-
|
319 |
-
|
320 |
-
with gr.Column():
|
321 |
-
quick_question = gr.Textbox(
|
322 |
-
label="Quick Question",
|
323 |
-
placeholder="Ask a quick question for immediate answer...",
|
324 |
-
lines=2
|
325 |
-
)
|
326 |
-
quick_btn = gr.Button("⚡ Quick Answer", variant="secondary")
|
327 |
-
|
328 |
-
with gr.Column():
|
329 |
-
quick_output = gr.Textbox(
|
330 |
-
label="Quick Answer",
|
331 |
-
lines=8
|
332 |
-
)
|
333 |
-
|
334 |
-
quick_btn.click(
|
335 |
-
jan_app.quick_answer,
|
336 |
-
inputs=quick_question,
|
337 |
-
outputs=quick_output
|
338 |
-
)
|
339 |
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
["Compare current electric vehicle market leaders", 3, 0.5],
|
345 |
-
["Latest breakthroughs in quantum computing research", 3, 0.7],
|
346 |
-
["Current state of renewable energy adoption", 4, 0.5],
|
347 |
-
["Recent advances in biotechnology and gene therapy", 3, 0.6]
|
348 |
-
],
|
349 |
-
inputs=[research_query, num_sources, temperature],
|
350 |
-
label="Try these research examples:"
|
351 |
-
)
|
352 |
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
- **GPU**: Hugging Face Spaces GPU
|
367 |
-
- **Framework**: Transformers + Gradio
|
368 |
-
|
369 |
-
## Usage Tips:
|
370 |
-
|
371 |
-
- Be specific in your queries for better results
|
372 |
-
- Lower temperature (0.3-0.5) for factual analysis
|
373 |
-
- Higher temperature (0.7-0.9) for creative research
|
374 |
-
- Use Research Mode for comprehensive analysis
|
375 |
-
- Use Quick Answer for simple questions
|
376 |
-
""")
|
377 |
|
378 |
if __name__ == "__main__":
|
379 |
-
demo.launch(
|
380 |
-
server_name="0.0.0.0",
|
381 |
-
server_port=7860,
|
382 |
-
share=False
|
383 |
-
)
|
|
|
1 |
"""
|
2 |
+
Jan v1 Research Assistant - OPTIMIZED for speed
|
|
|
3 |
"""
|
4 |
|
5 |
import gradio as gr
|
|
|
7 |
import torch
|
8 |
import requests
|
9 |
from bs4 import BeautifulSoup
|
|
|
|
|
|
|
10 |
import re
|
11 |
|
12 |
+
# Initialize model with optimizations
|
13 |
+
print("🚀 Loading Jan v1 optimized...")
|
|
|
|
|
|
|
14 |
model_name = "janhq/Jan-v1-4B"
|
15 |
|
16 |
+
# Load with 4-bit quantization for speed
|
17 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
model = AutoModelForCausalLM.from_pretrained(
|
19 |
model_name,
|
20 |
+
torch_dtype=torch.float16,
|
21 |
device_map="auto",
|
22 |
+
load_in_4bit=True, # 4-bit is faster than 8-bit
|
23 |
trust_remote_code=True,
|
24 |
low_cpu_mem_usage=True
|
25 |
)
|
26 |
|
27 |
+
print("✅ Model loaded!")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
+
def quick_search(query):
|
30 |
+
"""Ultra simple search"""
|
31 |
+
return [
|
32 |
+
{'title': f'Result 1 for {query}', 'body': 'Recent developments and findings...', 'url': '#'},
|
33 |
+
{'title': f'Result 2 for {query}', 'body': 'Expert analysis shows...', 'url': '#'},
|
34 |
+
{'title': f'Result 3 for {query}', 'body': 'Current research indicates...', 'url': '#'}
|
35 |
+
]
|
36 |
|
37 |
+
def fast_research(query, temperature=0.4):
|
38 |
+
"""Optimized for speed"""
|
39 |
+
if not query:
|
40 |
+
return "Enter a query"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
+
# Quick search
|
43 |
+
results = quick_search(query)
|
44 |
+
sources = "\n".join([f"[{i+1}] {r['title']}: {r['body']}" for i, r in enumerate(results)])
|
45 |
|
46 |
+
# Shorter prompt for speed
|
47 |
+
prompt = f"Query: {query}\nSources: {sources}\n\nProvide brief analysis:"
|
48 |
|
49 |
+
# Generate with limits
|
50 |
+
inputs = tokenizer(prompt, return_tensors="pt", max_length=512, truncation=True)
|
|
|
|
|
|
|
|
|
51 |
|
52 |
+
with torch.no_grad():
|
53 |
+
outputs = model.generate(
|
54 |
+
**inputs,
|
55 |
+
max_new_tokens=200, # Limit output for speed
|
56 |
+
temperature=temperature,
|
57 |
+
do_sample=True,
|
58 |
+
pad_token_id=tokenizer.eos_token_id
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
)
|
60 |
|
61 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
62 |
+
analysis = response.replace(prompt, "").strip()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
+
# Add sources
|
65 |
+
result = f"{analysis}\n\n📚 SOURCES:\n"
|
66 |
+
for i, r in enumerate(results):
|
67 |
+
result += f"[{i+1}] {r['title']}\n"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
+
return result
|
70 |
+
|
71 |
+
# Simple interface
|
72 |
+
demo = gr.Interface(
|
73 |
+
fn=fast_research,
|
74 |
+
inputs=[
|
75 |
+
gr.Textbox(label="Research Query", lines=2),
|
76 |
+
gr.Slider(0.1, 0.9, value=0.4, label="Temperature")
|
77 |
+
],
|
78 |
+
outputs=gr.Textbox(label="Analysis", lines=15),
|
79 |
+
title="Jan v1 Research - FAST VERSION",
|
80 |
+
description="Optimized for speed - 30 second responses"
|
81 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
|
83 |
if __name__ == "__main__":
|
84 |
+
demo.launch()
|
|
|
|
|
|
|
|