Spaces:
Paused
Paused
File size: 12,471 Bytes
4b392a8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 |
"""
Jan v1 Research Assistant for Hugging Face Spaces
Optimized for research tasks and source analysis
"""
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
import requests
from bs4 import BeautifulSoup
import json
from datetime import datetime
from typing import List, Dict, Optional
import hashlib
# Initialize model
print("π Loading Jan v1 model...")
model_name = "janhq/Jan-v1-4B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.bfloat16,
device_map="auto",
load_in_8bit=True # Reduce memory usage
)
print("β
Model loaded successfully!")
# Cache for responses
response_cache = {}
def get_cache_key(query: str, context: str) -> str:
"""Generate cache key for query+context"""
combined = f"{query}|{context}"
return hashlib.md5(combined.encode()).hexdigest()
def scrape_url(url: str) -> str:
"""Scrape and extract text from URL"""
try:
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36'
}
response = requests.get(url, headers=headers, timeout=10)
soup = BeautifulSoup(response.content, 'html.parser')
# Remove script and style elements
for script in soup(["script", "style"]):
script.decompose()
text = soup.get_text()
lines = (line.strip() for line in text.splitlines())
chunks = (phrase.strip() for line in lines for phrase in line.split(" "))
text = ' '.join(chunk for chunk in chunks if chunk)
return text[:4000] # Limit to 4000 chars
except Exception as e:
return f"Error scraping URL: {str(e)}"
def research_assistant(
query: str,
context: str = "",
temperature: float = 0.6,
use_cache: bool = True,
research_mode: str = "comprehensive"
) -> str:
"""
Main research assistant function
"""
# Check cache
cache_key = get_cache_key(query, context)
if use_cache and cache_key in response_cache:
return "π [Cached] " + response_cache[cache_key]
# Build prompt based on research mode
if research_mode == "comprehensive":
prompt = f"""You are an expert research analyst. Provide comprehensive analysis.
Context/Sources:
{context if context else "No specific context provided"}
Research Query:
{query}
Provide your analysis with:
1. Key Findings & Insights
2. Supporting Evidence
3. Critical Analysis
4. Confidence Level
5. Suggested Follow-up Questions
6. Potential Limitations
Analysis:"""
elif research_mode == "fact_extraction":
prompt = f"""Extract and verify factual information.
Source Material:
{context}
Task: {query}
Extract:
- Factual claims with confidence scores (0-100%)
- Key entities and relationships
- Dates, numbers, and statistics
- Contradictions or inconsistencies
Facts:"""
elif research_mode == "source_comparison":
prompt = f"""Compare and contrast multiple sources.
Sources:
{context}
Comparison Task: {query}
Analyze:
- Common themes
- Contradictions
- Unique perspectives
- Reliability assessment
- Synthesis
Comparison:"""
else: # quick_summary
prompt = f"""Provide a quick summary.
Content: {context}
Task: {query}
Summary:"""
# Tokenize and generate
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=2048)
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=1024,
temperature=temperature,
top_p=0.95,
top_k=20,
do_sample=True,
pad_token_id=tokenizer.eos_token_id
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Remove the prompt from response
response = response.replace(prompt, "").strip()
# Cache the response
if use_cache:
response_cache[cache_key] = response
return response
def process_multiple_sources(sources_text: str, query: str, temperature: float = 0.6) -> str:
"""Process multiple sources (URLs or text)"""
sources = sources_text.strip().split('\n')
combined_context = ""
source_count = 0
for source in sources[:5]: # Limit to 5 sources
source = source.strip()
if not source:
continue
source_count += 1
if source.startswith('http'):
content = scrape_url(source)
combined_context += f"\n\n--- Source {source_count} (URL: {source[:50]}...) ---\n{content[:800]}"
else:
combined_context += f"\n\n--- Source {source_count} (Text) ---\n{source[:800]}"
if not combined_context:
return "No valid sources provided"
return research_assistant(
query=query,
context=combined_context,
temperature=temperature,
research_mode="source_comparison"
)
def extract_entities(text: str) -> str:
"""Extract key entities from text"""
return research_assistant(
query="Extract all people, organizations, locations, dates, and key concepts",
context=text,
temperature=0.3,
research_mode="fact_extraction"
)
def generate_research_questions(topic: str, context: str = "") -> str:
"""Generate research questions for a topic"""
return research_assistant(
query=f"Generate 10 specific, actionable research questions about: {topic}",
context=context,
temperature=0.7,
research_mode="comprehensive"
)
# Create Gradio interface
with gr.Blocks(title="Jan v1 Research Assistant", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# π¬ Jan v1 Research Assistant
Powered by Jan-v1-4B (91.1% accuracy) - Optimized for research and analysis
### Features:
- π Web scraping and analysis
- π Multi-source comparison
- π Entity extraction
- β Research question generation
- πΎ Response caching
""")
with gr.Tab("Single Source Analysis"):
with gr.Row():
with gr.Column():
single_query = gr.Textbox(
label="Research Query",
placeholder="What would you like to research?",
lines=2
)
single_context = gr.Textbox(
label="Context (paste text or URL)",
placeholder="Paste article text or enter URL to analyze",
lines=5
)
single_mode = gr.Radio(
["comprehensive", "fact_extraction", "quick_summary"],
label="Analysis Mode",
value="comprehensive"
)
single_temp = gr.Slider(0.1, 1.0, value=0.6, label="Temperature")
single_cache = gr.Checkbox(label="Use cache", value=True)
single_btn = gr.Button("π Analyze", variant="primary")
with gr.Column():
single_output = gr.Textbox(
label="Analysis Results",
lines=15
)
def analyze_single(query, context, mode, temp, cache):
# Check if context is URL
if context.startswith('http'):
context = scrape_url(context)
return research_assistant(
query=query,
context=context,
temperature=temp,
use_cache=cache,
research_mode=mode
)
single_btn.click(
analyze_single,
inputs=[single_query, single_context, single_mode, single_temp, single_cache],
outputs=single_output
)
with gr.Tab("Multi-Source Comparison"):
with gr.Row():
with gr.Column():
multi_sources = gr.Textbox(
label="Sources (one per line, URLs or text)",
placeholder="https://example.com/article1\nhttps://example.com/article2\nOr paste text directly",
lines=6
)
multi_query = gr.Textbox(
label="Comparison Query",
placeholder="What aspects should I compare?",
lines=2
)
multi_temp = gr.Slider(0.1, 1.0, value=0.6, label="Temperature")
multi_btn = gr.Button("π Compare Sources", variant="primary")
with gr.Column():
multi_output = gr.Textbox(
label="Comparison Results",
lines=15
)
multi_btn.click(
process_multiple_sources,
inputs=[multi_sources, multi_query, multi_temp],
outputs=multi_output
)
with gr.Tab("Entity Extraction"):
with gr.Row():
with gr.Column():
entity_input = gr.Textbox(
label="Text or URL",
placeholder="Paste text or URL to extract entities from",
lines=8
)
entity_btn = gr.Button("π·οΈ Extract Entities", variant="primary")
with gr.Column():
entity_output = gr.Textbox(
label="Extracted Entities",
lines=10
)
def extract_entities_wrapper(text):
if text.startswith('http'):
text = scrape_url(text)
return extract_entities(text)
entity_btn.click(
extract_entities_wrapper,
inputs=entity_input,
outputs=entity_output
)
with gr.Tab("Research Question Generator"):
with gr.Row():
with gr.Column():
rq_topic = gr.Textbox(
label="Research Topic",
placeholder="Enter your research topic",
lines=2
)
rq_context = gr.Textbox(
label="Additional Context (optional)",
placeholder="Any specific focus areas or constraints",
lines=4
)
rq_btn = gr.Button("π‘ Generate Questions", variant="primary")
with gr.Column():
rq_output = gr.Textbox(
label="Research Questions",
lines=12
)
rq_btn.click(
generate_research_questions,
inputs=[rq_topic, rq_context],
outputs=rq_output
)
with gr.Tab("API Integration"):
gr.Markdown("""
### π Integrate with your Research App
Once deployed, you can call this Space via API:
```javascript
// JavaScript/TypeScript
const response = await fetch('https://[your-username].hf.space/api/predict', {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({
data: [
"Your research query",
"Context or URL",
"comprehensive", // mode
0.6, // temperature
true // use cache
]
})
});
const result = await response.json();
```
```python
# Python
import requests
response = requests.post(
'https://[your-username].hf.space/api/predict',
json={
"data": [
"Your research query",
"Context or URL",
"comprehensive",
0.6,
True
]
}
)
result = response.json()
```
""")
gr.Markdown("""
---
### π‘ Tips:
- Lower temperature (0.1-0.3) for factual extraction
- Higher temperature (0.7-0.9) for creative research questions
- Cache is cleared when Space restarts
- URLs are automatically scraped and analyzed
""")
if __name__ == "__main__":
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False
) |