Spaces:
Sleeping
Sleeping
File size: 11,158 Bytes
2ae78f5 8343769 2ae78f5 8343769 2ae78f5 8343769 2ae78f5 8343769 2ae78f5 8343769 2ae78f5 8343769 2ae78f5 8343769 2ae78f5 8343769 2ae78f5 8343769 2ae78f5 8343769 2ae78f5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 |
import os
import torch
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
from peft import PeftModel
import re
# Model configuration
BASE_MODEL = "deepseek-ai/deepseek-math-7b-instruct"
REPO_ID = "danxh/math-mcq-generator-v1"
# Global variables for model and tokenizer
model = None
tokenizer = None
def load_model():
"""Load the fine-tuned model with error handling"""
global model, tokenizer
try:
print("🔄 Loading model and tokenizer...")
# Simplified loading for Hugging Face Spaces
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.float16 # Changed to float16 for better compatibility
)
# Load base model
base_model = AutoModelForCausalLM.from_pretrained(
BASE_MODEL,
quantization_config=bnb_config,
device_map="auto",
torch_dtype=torch.float16,
trust_remote_code=True
)
# Load LoRA adapter
model = PeftModel.from_pretrained(base_model, REPO_ID)
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(REPO_ID)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
print("✅ Model loaded successfully!")
return True
except Exception as e:
print(f"❌ Error loading model: {str(e)}")
return False
def generate_mcq(chapter, topics, difficulty="medium", cognitive_skill="direct_application"):
"""Generate MCQ using the fine-tuned model"""
if model is None or tokenizer is None:
return "❌ Model not loaded. Please wait for initialization."
try:
input_text = f"chapter: {chapter}\ntopics: {topics}\nDifficulty: {difficulty}\nCognitive Skill: {cognitive_skill}"
prompt = f"""### Instruction:
Generate a math MCQ similar in style to the provided examples.
### Input:
{input_text}
### Response:
"""
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=512)
inputs = {k: v.to(model.device) for k, v in inputs.items()}
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=300,
temperature=0.7,
do_sample=True,
pad_token_id=tokenizer.eos_token_id,
eos_token_id=tokenizer.eos_token_id,
repetition_penalty=1.1
)
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
response_start = generated_text.find("### Response:") + len("### Response:")
response = generated_text[response_start:].strip()
return response
except Exception as e:
return f"❌ Error generating MCQ: {str(e)}"
def parse_mcq_response(response):
"""Parse the model response"""
try:
question_match = re.search(r'Question:\s*(.*?)(?=\nOptions:|Options:)', response, re.DOTALL)
question = question_match.group(1).strip() if question_match else "Question not found"
options_match = re.search(r'Options:\s*(.*?)(?=\nAnswer:|Answer:)', response, re.DOTALL)
if options_match:
options_text = options_match.group(1).strip()
option_pattern = r'\([A-D]\)\s*([^(]*?)(?=\s*\([A-D]\)|$)'
options = []
for match in re.finditer(option_pattern, options_text):
option_text = match.group(1).strip()
if option_text:
options.append(option_text)
else:
options = ["Options not found"]
answer_match = re.search(r'Answer:\s*([A-D])', response)
answer = answer_match.group(1) if answer_match else "Answer not found"
return {
"question": question,
"options": options,
"correct_answer": answer
}
except Exception as e:
return {
"question": "Parsing error",
"options": ["Error parsing options"],
"correct_answer": "N/A",
"error": str(e)
}
def generate_mcq_web(chapter, topics_text, difficulty, cognitive_skill, num_questions=1):
"""Web interface wrapper for MCQ generation"""
if model is None or tokenizer is None:
return """
<div style="border: 2px solid #ffc107; border-radius: 10px; padding: 20px; margin: 10px 0; background: #fff3cd;">
<h3 style="color: #856404;">⏳ Model Loading</h3>
<p>The model is still loading. Please wait a moment and try again.</p>
</div>
"""
try:
# Parse topics
topics_list = [t.strip() for t in topics_text.split(',') if t.strip()]
if not topics_list:
topics_list = ["General"]
results = []
for i in range(min(num_questions, 3)): # Limit to 3 questions max
# Generate MCQ
raw_response = generate_mcq(chapter, topics_list, difficulty, cognitive_skill)
parsed = parse_mcq_response(raw_response)
if "error" not in parsed:
# Format for web display
question_html = f"""
<div style="border: 2px solid #e1e5e9; border-radius: 10px; padding: 20px; margin: 10px 0; background: #f8f9fa;">
<h3 style="color: #2c3e50; margin-top: 0;">📚 Question {i+1}</h3>
<p style="font-size: 16px; line-height: 1.6; margin: 15px 0;"><strong>{parsed['question']}</strong></p>
<div style="margin: 15px 0;">
<h4 style="color: #34495e;">Options:</h4>
<ul style="list-style: none; padding: 0;">
<li style="margin: 8px 0; padding: 8px; background: #ecf0f1; border-radius: 5px;">
<strong>(A)</strong> {parsed['options'][0] if len(parsed['options']) > 0 else 'N/A'}
</li>
<li style="margin: 8px 0; padding: 8px; background: #ecf0f1; border-radius: 5px;">
<strong>(B)</strong> {parsed['options'][1] if len(parsed['options']) > 1 else 'N/A'}
</li>
<li style="margin: 8px 0; padding: 8px; background: #ecf0f1; border-radius: 5px;">
<strong>(C)</strong> {parsed['options'][2] if len(parsed['options']) > 2 else 'N/A'}
</li>
<li style="margin: 8px 0; padding: 8px; background: #ecf0f1; border-radius: 5px;">
<strong>(D)</strong> {parsed['options'][3] if len(parsed['options']) > 3 else 'N/A'}
</li>
</ul>
</div>
<div style="margin-top: 15px; padding: 10px; background: #d5edda; border-radius: 5px; border-left: 4px solid #28a745;">
<strong>✅ Correct Answer: {parsed['correct_answer']}</strong>
</div>
</div>
"""
results.append(question_html)
else:
error_html = f"""
<div style="border: 2px solid #dc3545; border-radius: 10px; padding: 20px; margin: 10px 0; background: #f8d7da;">
<h3 style="color: #721c24;">❌ Error generating question {i+1}</h3>
<p>{parsed.get('error', 'Unknown error occurred')}</p>
</div>
"""
results.append(error_html)
return "".join(results)
except Exception as e:
return f"""
<div style="border: 2px solid #dc3545; border-radius: 10px; padding: 20px; margin: 10px 0; background: #f8d7da;">
<h3 style="color: #721c24;">❌ System Error</h3>
<p>Error: {str(e)}</p>
</div>
"""
# Create the interface
interface = gr.Interface(
fn=generate_mcq_web,
inputs=[
gr.Textbox(
label="📚 Chapter",
placeholder="e.g., Applications of Trigonometry, Conic Sections",
value="Applications of Trigonometry",
info="Enter the mathematics chapter or topic area"
),
gr.Textbox(
label="📝 Topics (comma-separated)",
placeholder="e.g., Heights and Distances, Circle, Tangents",
value="Heights and Distances",
info="Enter specific topics within the chapter, separated by commas"
),
gr.Dropdown(
choices=["easy", "medium", "hard"],
label="⚡ Difficulty Level",
value="medium",
info="Select the difficulty level for the questions"
),
gr.Dropdown(
choices=["recall", "direct_application", "pattern_recognition", "strategic_reasoning", "trap_aware"],
label="🧠 Cognitive Skill",
value="direct_application",
info="Select the type of thinking skill required"
),
gr.Slider(
minimum=1,
maximum=3,
step=1,
label="🔢 Number of Questions",
value=1,
info="How many questions to generate (max 3)"
)
],
outputs=gr.HTML(label="Generated MCQ(s)"),
title="🧮 Mathematics MCQ Generator",
description="""
Generate high-quality mathematics multiple choice questions using AI.
This model has been fine-tuned specifically for educational content creation.
**Note**: Model loading may take a few minutes on first startup.
""",
article="""
### 🔬 About This Model
This MCQ generator is powered by a fine-tuned version of DeepSeek-Math-7B, specifically adapted for mathematics education.
### 💡 Tips for Best Results:
- Be specific with chapter and topic names
- Try different cognitive skill levels for variety
- Start with 1 question to test, then generate more
### 🤝 Collaboration
This is part of a collaborative project to create specialized educational AI tools.
""",
theme=gr.themes.Soft(primary_hue="blue", secondary_hue="purple"),
examples=[
["Applications of Trigonometry", "Heights and Distances", "easy", "recall", 1],
["Conic Sections", "Circle", "medium", "pattern_recognition", 1],
["Applications of Trigonometry", "Angle of Elevation and Depression", "hard", "strategic_reasoning", 1]
]
)
# Initialize model loading
print("🚀 Starting model loading...")
model_loaded = load_model()
if model_loaded:
print("✅ Ready to generate MCQs!")
else:
print("❌ Model loading failed. The interface may not work properly.")
# Launch the interface
if __name__ == "__main__":
interface.launch()
|